<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>3</td>
</tr>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>Special Tool Requirements</td>
<td>6</td>
</tr>
<tr>
<td>Line Inspection</td>
<td>7</td>
</tr>
<tr>
<td>Checklist Instructions</td>
<td></td>
</tr>
<tr>
<td>Pre-Start Checks</td>
<td>8</td>
</tr>
<tr>
<td>Post-Start Checks</td>
<td>8</td>
</tr>
<tr>
<td>Dyno/Road Test</td>
<td>9</td>
</tr>
<tr>
<td>Optional Features</td>
<td>9</td>
</tr>
<tr>
<td>Flywheel Installation</td>
<td>10</td>
</tr>
<tr>
<td>Flywheel Housing Sealing Requirements</td>
<td>13</td>
</tr>
<tr>
<td>Starter & Engine Crankshaft Sealing Requirements</td>
<td></td>
</tr>
<tr>
<td>Transmission Mounting</td>
<td></td>
</tr>
<tr>
<td>Handling</td>
<td>16</td>
</tr>
<tr>
<td>Mounting To Engine</td>
<td>16</td>
</tr>
<tr>
<td>Transmission Support Requirements</td>
<td></td>
</tr>
<tr>
<td>Using Rear Supports</td>
<td>19</td>
</tr>
<tr>
<td>Using Transmission Nodal Mounts</td>
<td>19</td>
</tr>
<tr>
<td>Throttle Sensor Mounting</td>
<td>23</td>
</tr>
<tr>
<td>Fuel Interrupt Mounting</td>
<td></td>
</tr>
<tr>
<td>Air Throttle/Electro-Pneumatic System</td>
<td>27</td>
</tr>
<tr>
<td>Fuel Interrupt Functional Test (AT Models)</td>
<td>28</td>
</tr>
<tr>
<td>Cooler Requirements</td>
<td></td>
</tr>
<tr>
<td>General Requirements</td>
<td>30</td>
</tr>
<tr>
<td>Cooler Application Guidelines</td>
<td>30</td>
</tr>
<tr>
<td>Transmission Cooling System Without Remote Bypass</td>
<td>31</td>
</tr>
<tr>
<td>Transmission Cooling System With Remote Bypass</td>
<td>32</td>
</tr>
<tr>
<td>External Transmission Filters</td>
<td>33</td>
</tr>
<tr>
<td>Transmission Temperature Gauge/Alarm/Sender</td>
<td>35</td>
</tr>
<tr>
<td>Cooler Flow Verification</td>
<td>39</td>
</tr>
<tr>
<td>Dipstick and Dipstick Tube Information</td>
<td>40</td>
</tr>
<tr>
<td>Dipstick Validation</td>
<td>43</td>
</tr>
<tr>
<td>Lubrication Requirements</td>
<td>46</td>
</tr>
<tr>
<td>Oil Fill Procedure</td>
<td>47</td>
</tr>
<tr>
<td>Lube Recommendations</td>
<td>48</td>
</tr>
<tr>
<td>Air Supply/Dryer Requirements</td>
<td>49</td>
</tr>
</tbody>
</table>
Table of Contents

Shift Control System (Electric)
- Shift Control Installation (Electronic Shifter) ... 51

Power Take-Off
- Overview—Available PTO Locations and Requirements 71
- Power Take-Off Availability w/Low Profile Oil Pan Option 74
- PTO Selection ... 75
- 8-Bolt Position and 6-Bolt Position .. 76
- Chart of Recommended Vocations ... 77
- Electrical Interface Requirements ... 78
- PTO Space Claims ... 81
- PTO Manufacturer's Information ... 83

General Electrical System Requirements .. 84

Electrical Requirements For J-1922 Communications Link 99

Engine Brake Interface .. 105

Oil Pan Options/Space Claims .. 106

Appendix I
- Installation Requirements ... 110
- Installation Quick Reference ... 114
- Torque Specifications .. 116
- Publications and Drawings ... 117
- Line Inspection Form ... 118
- Vendor List .. 122
- Troubleshooting ... 123

Appendix II
- Electronic Shift Lever .. 124
- Protective Boot Accessory ... 124

Appendix III
- Wiring Harness .. 125
- Specifications for Wiring Harness ... 126
- Wire Harness Application Form .. 129

Appendix IV
- Fuel Control Functional Test (For Mechanically Governed Engines) 130
- "AT" Model Without Power Synchronizer ... 131

Appendix V
- CEEMAT Application Guidelines ... 132

Appendix VI
- Body Builder Guide For Tapping Into Electrical Systems 133
- Ceemat Inputs and Outputs ... 134
Air Supply/Dryer Requirements

Air Supply/Dryer Requirements .. 50

Appendix II

Electronic Shift Lever Protective Boot Accessory 124

Appendix III

Electrical Shifter — Single Station 127
Electronic Shifter — Dual Station 128
Wiring Harness .. 125

Appendix IV

"AT" Model Without Power Synchronizer 131

Cooler Requirements

Cooling Requirements Oil To Air 34
Cooling Requirements Oil To Water 31
OI Cooler Return Options For Low-Profile OIl Pan 38
Temperature Control Module .. 37
Temperature Gauge .. 35
Transmission Temperature Module Circuit 36

Dipstick and Dipstick Tube Information

Dipstick Tube Mounting ... 45
Dipstick Validation ... 43
Dipstick Validation Rotated Pan 44
Dipstick Validation Standard Low Profile Oil Pan 44
Standard Aluminum (Deep) Stick - 5501004 41
Standard Aluminum (Deep) Tube - 5500503 41
Standard Low Profile Oil Pan Dipstick - 5501016 42
Standard Low Profile Oil Pan Dipstick Tube - 5500511 42

Electrical Requirements For J-1922 Communications

J-1922 Communication Link ... 99
Location of J-1922 Control Data Link on Detroit Diesel DDECII ... 103
Location of the J-1922 Control Data Link on Cummins Engines ... 100
Location of the J-1922 Control Data Link on Detroit Diesel DDECIII ... 104
Location of the J-1922 Control Data Link on the Caterpillar Engines ... 101, 102

Engine Brake Interface

Pressure Switch Location For Optional Engine Brake 105

Flywheel Housing Sealing Requirements

Flywheel Housing Sealing Requirements 14, 15

Flywheel Installation

Bolt-On Drive Ring With Pilot Adaptor 11
Single Piece Flywheel Assembly 12

Fuel Interrupt Mounting

Defuel Control Wiring Diagram 29
Fuel Interrupt Mounting (Air/Throttle) 28

General Electrical System Requirements

Auxiliary Inputs and Outputs 96
Auxiliary Inputs and Outputs Wiring Diagram 97
Brake Switch Connections ... 90
Brake Switch Wiring Diagram 91
Diagnostic Connections ... 94
Ground & Battery Connections 88
J-1587 Diagnostic Connector Diagram 95
Power Circuits Wiring Diagram 87
Power Lead Connections ... 86
Quick To Neutral Feature ... 98
Transmission Neutral Output Feature 98
General Electrical System Requirements (con't)
- Transmission Service Light Using Eaton Service Light 92
- Transmission Service Light Wiring Diagram .. 93
- Typical Wire Harness ... 84
- Wiring Diagram .. 85

Oil Pan Options/Space Claims
- "AT" Rotated Pan — Rear View .. 106
- Front View .. 108
- Left View .. 107
- Rear View ... 107
- Right View .. 108
- Rotated Pan — Right Side View ... 106
- Shift Lever ... 109

Power Take-Off
- Countershaft Driven PTOs ... 78
- Countershaft PTO Wiring Diagram ... 79
- Engine Driven PTOs .. 73
- Mechanically Governed Engines / CEEMAT AT 71
- Model ATE (Electronic Engine) PTO Locations 72
- Model ATE Inertia Brake Locations ... 76
- Power Take-Off Availability w/Low Profile Oil Pan 74
- PTO Selection ... 75
- Split-Shaft PTO Wiring Diagram .. 80
- Transmission Countershaft Driven PTOs ... 82
- Transmission Mounted - Engine Driven PTO .. 81

Shift Control System (Electric)
- Auto Neutral Feature .. 62
- Auxiliary Inputs and Outputs ... 61
- Dimmer Control Input ... 60
- Electronic Shifter .. 52
- Electronic Shifter — Dual Station .. 66
- Electronic Shifter — Single Station .. 55
- Electronic Shifter Communication Enable Pin 63
- ESL_ENABLE For Dual Station .. 68
- J-1922 Data Link (Electronically Governed Engines) 65
- J-1922 Data Link ... 64
- Power Lead Connections .. 57
- Reverse Relay ... 59
- Reverse Relay For Dual Station ... 70
- Start Enable Relay ... 58
- Start Enable Relay For Dual Station .. 69
- Trans In Gear Output .. 62
- Wire Diagram Dual Station ... 67
- Wire Diagram For Electronic Shifter ... 56

Throttle Sensor Mounting
- Air Throttle Position Sensor Interface .. 25
- Linear Throttle Position Sensor Installation .. 24
- Throttle Position Sensor Wiring Diagram .. 26

Transmission Mounting
- Transmission Mounting Typical Lift Points .. 17
- Transmission To Flywheel Assembly .. 18

Transmission Support Requirements
- Nodal Mount Dimensions .. 22
- Typical Rear Support Designs ... 20
- Using Transmission Nodal Mounts ... 21
This Eaton publication is intended to be a reference guide for the installation of RTO-11, 13, 14, 16109-AT/ATE CEEMAT series transmissions. As much general vehicle and transmission information has been given as practical for covering the wide range of applications. The information given will benefit the OEM installer to insure correct installation procedures therefore providing the utmost in satisfactory operation and long service life. For additional CEEMAT information see the publications section of this booklet. For specific engine information contact engine OEM.

Specific Truck O.E.M Installation Requirements are shown shaded in each section and also restated in Appendix I.

Failure to adhere to Eaton Installation Requirements may effect CEEMAT™ performance and/or warranty coverage.

All CEEMAT™ transmissions installed at O.E.M Facilities must meet the application requirements specified in Transmission Application Approval Form FUL-219.
Diagnostic Tools For CEEMAT Transmission

OTC Tool & Equipment Division, SPX Corporation

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5505011</td>
<td>Monitor HD Diagnostic Tool w/cable & QR cards</td>
</tr>
<tr>
<td>5505012</td>
<td>CEEMAT Software Cartridge</td>
</tr>
<tr>
<td>5505027</td>
<td>Volt OHM Meter</td>
</tr>
<tr>
<td>5505030</td>
<td>Hydraulic Tool Kit</td>
</tr>
<tr>
<td>5505032</td>
<td>Transmission Cradle</td>
</tr>
<tr>
<td>5505033</td>
<td>Adaptor Plate</td>
</tr>
</tbody>
</table>

For ordering in U.S. and Canada use 1-800-533-0492
(In Minnesota call 507-455-7010.)

MPSI Micro Processor Systems, Inc.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>104004</td>
<td>Pro-Link Main</td>
</tr>
<tr>
<td>205040</td>
<td>MPC Cartridge</td>
</tr>
<tr>
<td>805001</td>
<td>MPC Eaton Systems Software</td>
</tr>
<tr>
<td>205043</td>
<td>MPC J1939 Daughter Board</td>
</tr>
<tr>
<td>404025</td>
<td>J1939 Adapter</td>
</tr>
</tbody>
</table>

MPSI Phone Order Use 1-800-639-6774
NOTE: MPSI Pro-Link 9000 Diagnostic tools will be available for use in 1996.

Recommend Literature

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRTS-0020</td>
<td>Troubleshooting Guide</td>
</tr>
<tr>
<td>TRDR-0020</td>
<td>Drivers Instructions</td>
</tr>
<tr>
<td>TRSM-0020</td>
<td>Service Manual</td>
</tr>
<tr>
<td>TRIP-0023 (11109)</td>
<td>Illustrated Parts List</td>
</tr>
<tr>
<td>TRIP-0025 (13109)</td>
<td>Illustrated Parts List</td>
</tr>
<tr>
<td>TRIP-0022 (14109)</td>
<td>Illustrated Parts List</td>
</tr>
<tr>
<td>TRIP-0026 (16109)</td>
<td>Illustrated Parts List</td>
</tr>
</tbody>
</table>

Videos

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TROV-0301A</td>
<td>Driving Instructions</td>
</tr>
<tr>
<td>TRSV-0301B</td>
<td>Theory of Operation</td>
</tr>
<tr>
<td>TRSV-0301C</td>
<td>Fault Code Diagnostics</td>
</tr>
</tbody>
</table>

For more information, phone 1-800-826-HELP (826-4357)
The CEEMAT™ Line Inspection checklist, found in Appendix III, was developed as an installation tool for line personnel to insure the correct operation of each vehicle and to assist the vehicle O.E.M to identify transmission quality related issues as well as O.E.M line quality issues. Used correctly, this checklist identifies transmission issues and aids in tracking the problem until corrected.

The recommended use of the checklist is as follows:

1. A separate checklist should be filled out for each vehicle built with a CEEMAT.

2. The section, identified as PRE-START CHECKS should be performed prior to the initial start-up of the vehicle. This section insures the CEEMAT has the correct power supplies, air supply, sufficient oil for transmission function, and can be operated safely when the engine is started. You will find instructions on page 8.

3. The section POST-START CHECKS should be performed after the engine is first started to insure the transmission is filled with oil to the correct level and to insure proper operation of the interface systems prior to actually driving the vehicle. You will find instructions on page 8.

4. At this point the checklist should be reviewed and if necessary corrective action taken prior to the dyno or road test.

5. The DYNO/ROAD TEST section is used to verify that all CEEMAT systems are functional, the driver information is supplied in the cab, and to insure that all assembly related fault codes have been cleared. You will find instructions on page 9.

6. The O.E.M now has a record of transmission related information and repairs made to each unit and is able to track and correct repeated quality issues.

7. A copy of the checklist should be supplied to Eaton Automated Products Application department for installation history. O.E.M line personnel should become familiar with the checklist and the CEEMAT hand-held diagnostic tool operation prior to a scheduled build. Eaton Automated Products Applications department can coordinate training and information to expedite this process.

This checklist represents a generic system which can be tailored to the individual O.E.M to achieve the best possible method of CEEMAT installation. Eaton recommends the use of this system to maintain the utmost in satisfactory operation and long service life.

Each CEEMAT installed at the O.E.M must pass the on-line checklist requirements per Eaton CEEMAT™ Line Inspection Form, Appendix III, prior to shipment from the O.E.M plant.
Refer to the CEEMAT Line Inspection form in Appendix III while performing the following procedure:

Pre-Start Checks

1. To verify CEEMAT Battery Power and Ignition Power are correctly wired to the appropriate source. The shift lever must be in NEUTRAL, turn the key switch on, then turn it to the off position and wait 15 seconds. An audible click or clunk sound should be heard from the top of the transmission as it powers down.

 If this condition does not occur then check power @ Main transmission harness with voltmeter.

 Using standard volt/ohm meter, disconnect transmission main 19 pin harness connector and touch black lead to Pin B and red lead to Pin K, meter reading should be within .6 volts of battery voltage (with the key on only). Now touch black lead to Pin C and red lead to Pin L, meter reading should be within .6 volts of battery voltage (with key on or off).

2. Visually verify the CEEMAT Battery Power is protected by a 30 AMP in line fuse. Visually verify the Ignition Power is protected by a Automatic resetting circuit breaker, 15 AMP for 12 volt power supply and 10 AMP for 24 volt supply.

3. Air Supply - Visually verify that the CEEMAT air supply (Minimum 3/8” ID.) is plumbed directly from the front or rear service brake air tank (A or B tank) and not to the wet tank or tee’d into another component’s supply line. CEEMAT minimum air requirement - 90 PSI. An air drier is required.

4. Oil Fill - Verify that a minimum of 7 gallons of CEEMAT approved oil has been added to the CEEMAT before attempting to start the engine. Failure to add sufficient oil could damage the transmission.

5. Hand-held tool checks - Attach the CEEMAT diagnostic tool to the transmission diagnostic port in the dash and turn the key switch to the “on” position but do not start the engine. Follow the instructions called out on the screen, push number 1 to get to the main menu. Now, using the down arrows, select the appropriate test from the checklist. Perform each pre-start test per procedures specified in the CEEMAT Troubleshooting Guide, TRTS-0020, to verify proper operation.

6. Service Light - Verify that the transmission service light momentarily lights up when the key switch is turned on. It should light up for 1 second then go off unless an active code is present. The service light may also light up when the starter button is depressed if so equipped. This is acceptable.

Post-Start Checks

7. Oil Fill - As soon as possible, following initial vehicle start-up, the transmission should be filled with the remaining oil required to arrive at the correct operating level. This process must be done with the engine running at idle. Slowly add oil to obtain the proper oil level at the appropriate temperature band on the dipstick. Reference Drivers Instruction TRDR-0020 for additional information.

 NOTE: Do not place the CEEMAT shift lever in drive gear position until the transmission oil fill is at the minimum fill level mark on the dipstick.

8. Hand-held Tool checks with the engine running - Attach the hand-held tool to the transmission diagnostic port mounted in the dash and proceed to the appropriate test specified on the post-start checklist. Perform the tests per procedures specified in the CEEMAT Troubleshooting Guide, TRTS-0020.
Dyno/Road Test

9. With the engine not running, place the shift control in drive and attempt to start the engine. Repeat for each of the drive and reverse gear positions to verify the engine will not start.

10. With the engine running, depress the service brake pedal and select each drive gear position and verify that engagement is felt for each position. Use hand-held in Monitor Mode to verify top gear (9th).

11. Verify through normal operation that the transmission temperature gauge is functional.

12. Check transmission oil level with the engine idling and the transmission in neutral to verify the correct level at the proper temperature band.

13. Visually check for oil drips or residue on the transmission and related cooler lines.

14. Make sure that CEEMAT dash label is present and that a CEEMAT driver’s instruction booklet is included with other vehicle information.

15. Attach the hand-held tool to the transmission diagnostic port in the dash and proceed to CLEAR INTERMITTENT CODES which may have appeared during the build process.

Optional Features

The OEM must provide the appropriate wire/s from the 19 pin transmission connector and deadhead the other end into a connector. If the OEM or Body Builder is responsible for completely wiring one or more of these features then follow the appropriate sections in the Installation Guide pertaining to each feature.

 This is a 12V output signal directly from the transmission, which is generated only when the transmission is in neutral. This feature is used extensively in vocational applications where a neutral signal is required to activate or enable a remote throttle.

17. Auto Neutral 24 Way Electronic Shift Lever Pin B10 (Software not required)
 This feature uses the electronic shifter auxiliary input to neutralize the transmission. This is accomplished when this input is grounded. This function is usually tied into the parking brake via a pressure switch. When the park brake is applied, the input is grounded, thus neutralizing the transmission. To de-active Auto Neutral, the operator must release the parking brake while the lever is in neutral.

18. Quick to Neutral QTN Transmission Connector Pin R (Software required)
 Sometimes called forced neutral, this function uses a 12V input to the transmission to neutralize the transmission disengaging the torque converter, leaving the gearbox engaged. Once the signal is switched off, the converter can engage. For engagement, the engine must be below 1000 rpm and the engagement must be within 5 seconds from release of the brake signal. If this time window is surpassed, the operator must select neutral and then place the lever back in gear. This feature is for special vocational applications where frequent stopping is required without movement of the shift lever.
 Activation of this circuit is usually controlled by a “enable” switch located on the dash panel. Note that this function is only operational at road speeds below 6 mph.

 Pump Model Transmission Connector Pin R (Software required)
 This feature is used in conjunction with split shaft PTO operation. The CEEMAT senses engagement of the PTO via a spare electrical input to the transmission, and thus will engage high range direct gear when the shift lever is placed in "D".

19. Engine Brake Disable Output Pin F (Software not required)
 This is a 12V output signal directly from the transmission, verify through normal operation that the engine brake functions (if equipped) correctly per manufacturers requirements. AT Only. The normally closed contacts of the relay must be used. Refer to Page 105 for more information.
Two types of flywheel designs are used depending on the specific engine application:

a) Separate bolt on drive ring and pilot adaptor, see figure 1.
 For additional information contact Eaton Engineering or Engine O.E.M.

b) One piece flywheel with integral drive ring, see figure 2.

The flywheel and drive ring must be an Eaton Approved design and must be installed per the appropriate Eaton or Engine O.E.M specifications.

1. Check the engine crankshaft seal to insure it is an approved double lip design (see “Starter and Engine Crankshaft Sealing Requirements”).

2. Check the starter to insure it is a sealed configuration (see “Starter and Engine Crankshaft Sealing Requirements”).

3. Handle the flywheel and drive ring carefully to avoid damage to the mating surfaces.

4. The installed flywheel must meet the engine O.E.M specifications for concentricity. Refer to engine specifications for runout limits.

5. Install the flywheel onto the engine crankshaft, using the hardware and mounting specifications specified by the engine manufacturer.

6. **Pilot Adapter:** When using the bolt-on drive ring adapter, a center pilot adapter must also be used. Care should be used to insure the adapter is completely seated into the flywheel, see figure 2 for dimensional information.

7. Install the bolt-on drive ring (see figure 2) using the following Hardware:

 Inch Design:
 - (12) capscrew and washer assembly
 - 7/16-14 X 1 1/4 SAE grade 5 zinc chromate with sealant, torque 37-50 Lbf·ft.

 Metric Design:
 - (12) flanged shouldered capscrew
 - M10 X 1.5 X 35 ISO class 12.9 zinc chromate with sealant, torque 50-55 Lbf·ft
 - use with hardened steel flatwasher

NOTE: Do not tighten any flywheel capscrews until all of the capscrews have been installed and finger tightened.
Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

WARNING

<table>
<thead>
<tr>
<th>Eaton Drive Ring Kit Numbers for most popular engines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detroit Diesel</td>
</tr>
<tr>
<td>DDS60 & 8V92</td>
</tr>
<tr>
<td>Kit Includes:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

20001-4/92
Single Piece Flywheel Assembly

Figure 2

One Piece Flywheel With Integral Drive Ring

Typical SAE #1 Wet Type Flywheel Housing

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Flywheel Housing Sealing Requirements

1. The engine flywheel housing must be approved for “wet” applications, including a double lip rear engine crankshaft seal. The housing must provide a completely sealed environment for the torque converter area.

2. The vehicle O.E.M is responsible for sealing all holes in the flywheel housing/converter housing area (use metal plugs only) including starter, mounting pads, transmission mounting, speed pickups, etc. See figures 3 and 4.

3. Speed Sensors mounted in the flywheel housing must use a sealing jam nut, O-ring, or equivalent sealing method.

NOTE: The installation sketches shown in this section represent typical sealing locations only. Other sealing requirements may be needed in each unique application. Special care should be taken to insure a sealed design.

Starter & Engine Crankshaft Sealing Requirements

1. Approved starters must effectively contain the oil in the flywheel housing.

2. Gasket, seal ring, or equivalent sealing method along with sealed fasteners must be used when mounting the starter to the flywheel housing.

Approved engine crankshaft seals must not allow the transfer of oil between the engine and the transmission. The flywheel and torque converter housing will not build internal pressure if sealed correctly.
Flywheel Housing Sealing Requirements

Figure 3

Transmission To Flywheel Housing Mounting Bolts

Approved Double Lip Rear Engine Crankshaft Seal

Apply Sealant To Any Plugs, Capscrews, or Threaded Sensors Located on Either Flywheel Housing or Torque Converter Housing. Use metal plugs only.

Standard "Wet" Type Flywheel Housing

10 [2.5]

30°

View Z
Scale 4/1
Recommended Conformance To SAE J1172

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Flywheel Housing Sealing Requirements

Figure 4

All Tapped Through Holes Must Be Sealed At:
- Engine Mounting Pads
- Torque Converter
- Nodal Mounts

Standard "Wet" Type Flywheel Housing

Any Plugs, Caps, Speed Pickups, Capscrews or Other Through Holes in Flywheel Housing Must Be Securely Sealed.

Sealed Starter With Gasket Secured By Adhesive/Sealant Coated Capscrews

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Handling

1. Handle the transmission carefully to avoid damage to the transmission components and to surrounding vehicle components.

2. Never set the transmission directly on the oil pan. If the pan is damaged or bent inward, the internal suction screen should be inspected for damage.

3. Use a hoist or transmission jack that permits precise control of transmission movement during installation, see figure 5.

NOTE: A special transmission jack cradle (with adaptor for 9109 series) is available from Eaton - P/N 5505032 cradle and 5505033 adaptor.

Mounting To Engine

1. Use the transmission lifting eyes provided, see figure 5.

2. Use a three point lift chain with a minimum capacity of 1 TON, see figure 5.

3. Adjust lift chain or transmission jack to obtain the same relative angle as the engine.

4. Lubricate the transmission torque converter center pilot and the transmission O-ring seal with soluble grease or equivalent, see figure 6.

5. Align the converter splines and the flywheel splines to mesh and push the transmission into the flywheel ring and housing. Pushing by hand should be the only force required to seat the transmission O-ring into the housing. If interference is encountered, move the transmission away from the engine to investigate the cause, see figure 6.

6. Align the converter housing bolt holes with the engine flywheel housing bolt holes and install all the capscrews finger tight.

NOTE: The converter housing must be flush against the engine flywheel housing before tightening any capscrews. DO NOT USE THE CAPSCREWS TO SEAT THE HOUSING.

7. Tighten four mounting capscrews at 90° intervals around the converter housing, then tighten the remaining transmission mounting capscrews using the recommended torque specifications.

NOTE: Do not tighten any mounting capscrews until all capscrews have been installed and finger tightened.

8. Recommended hardware for mounting the transmission to the engine flywheel housing as follows: (see figure 6)

 - Inch Design -
 - (12) Hex head flanged capscrews
 - 7/16-14 X 1 1/4 SAE grade 5 minimum zinc Chromate with sealant
 - torque to 37-50 Lbf-ft.

 - (12) Hex head flanged capscrews
 - 3/8-16 X 1 1/4 SAE grade 5 minimum zinc chromate with sealant
 - torque to 26-32 Lbf-ft.
 - use with hardened steel flatwashers (12)
Transmission Mounting

Metric Design—(12) 12 point flanged shoulder capscrews
M10 X 1.5 X 35 ISO class 12.9
zinc chromate with sealant
torque to 26-35 Lb-ft.
use with hardened steel flatwashers (12)

Transmission Mounting Typical Lift Points

Figure 5

3 Point Lift Chain With Minimum 1 Ton Capacity
Transmission Lifting Eyes

5 Point Lift Chain With Minimum 2 Ton Capacity

CAUTION
Clamp or Secure Before Releasing Lifting Chains

WARNING
Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

Note: The CEEMAT comes equipped with special sealed washers at the ECU cover mounting capscrew locations (see illustration), these capscrews must not be removed or replaced. Standoff brackets or hose clamps can not be used at any of the ECU capscrew locations.
Transmission To Flywheel Assembly

Figure 6

![Diagram of Transmission To Flywheel Assembly]

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Using Rear Supports

1. A rear transmission support is required for all installations where the nodal mount supports are not used. The O.E.M is responsible for this design.

2. Many O.E.M rear support designs are already being used for standard Eaton Roadranger transmissions. These same rear supports can be used with the CEEMAT system. Eaton recommends the vehicle O.E.M follow SAE Guidelines for rear support design (Reference SAE SP-479). See figure 7 for typical rear support designs.

3. Optional long or short rear support studs are available when ordering the CEEMAT, see figure 7.

4. Rear support should be mounted in a way as not to interfere with transmission air hoses.

Using Transmission Nodal Mounts

1. The transmission nodal mounting pads are approved to be used as a rear engine support location. Using these support pads requires special sealing requirements when installing the mounting capscrews. See figure 8.

2. The nodal mount tapped holes must be sealed if used. The CEEMAT comes equipped with sealed capscrews at the required location along with warning labels to remind the technician that these locations require capscrews with thread sealant if replaced, see figure 8.

 Recommended sealant for nodal mount capscrews is Loctite® #567 pipe sealant (telfon type) or equivalent.

3. The O.E.M is responsible for the nodal mount design and sealing the required capscrews at the nodal mount location. See figure 8.

4. See figure 9 for nodal mount dimensions for SAE NO.1 Torque Converter housing.

5. Torque transmission nodal mount capscrews (3/4-10 UNC) to 180-190 Lb-ft of torque.
Typical Rear Support Designs

Figure 7

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

WARNING
Using Transmission Nodal Mounts

Figure 8

Right Side View

Nodal Mount Sealing Bolts Supplied By Eaton

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Nodal Mount Dimensions

Figure 9

Transmission To Flywheel Housing Mounting Face

- 7.38 [187.5] for 14 Inch Converter Models
- 7.84 [199.1] 16 Inch Converter Models
- .406 [10.3] 4 x 3/4 - 10 UNC-3B

4.50 [114.3]

4.00 [101.6]

8.25 [209.6] 8.25 [209.6]

Dimensions For SAE No. 1 Torque Converter Housing

Recommended Thread Sealant: Loctite® #567 Pipe Sealant (Teflon Type) or Equivalent

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

WARNING
The Linear Type Throttle Position Sensor (TPS), shown on the following page, and the integral rotary style, now available on the Williams Control, Inc. air throttle, are currently being used with mechanically controlled engines.

This throttle sensor mechanism is needed only with “AT” versions of the CEEMAT.

1. The sensor body must be mounted to a solid flat frame member not on the engine or power package.

 Locate sensor where temperatures will not exceed 250°F. The connector port of the sensor body must point downward to prevent moisture contamination, see figure 10.

2. M6 or 1/4" capscrews are recommended for mounting the TPS body, torque to 7-10 Lb-ft.

3. The TPS mating connector must consist of the following Packard Weather Pack Part Numbers:
 - (1) Body 12015793
 - (3) Pin 12089305
 - (3) Seal 12015193

4. Anchor cable housing securely to the engine with an O.E.M supplied bracket and clamp to prevent movement of the cable housing. The mounting configuration is the responsibility of the individual O.E.M but cable travel and offset loading restrictions apply as shown, see figure 10. A slotted (axial) position adjustment of .5" is recommended to compensate for system mounting tolerance.

5. Attach cable end of TPS to O.E.M supplied fuel lever bracket to provide desired travel and acceptable loading. The actual configuration is up to the individual O.E.M, but the cable end must slide freely in fuel lever to permit fuel lever to return to the closed position even when the cable end remains extended. See figure 10 for operating tolerance.

6. The cable itself cannot have less than a 6.00" radius, see figure 10.

7. Cable stroke cannot be less than .630" or more than .870", see figure 10.

8. Mounting dimension from center of cable housing anchor groove to cable attachment on fuel lever in the zero throttle position should be not more than 3.950" or less than 3.780", see figure 10.

9. The cable end must not exceed a 10 degree conical operating angle, see figure 10.

10. The Eaton Hand-Held Diagnostic Tool (5505011) is recommended to verify correct adjustment of the Throttle Position Sensor per the procedure called out in the CEEMAT Troubleshooting Guide (TRTS-0020).
Linear Throttle Position Sensor Installation

Figure 10

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

* Approximate dimension needed to obtain correct cable travel.

<table>
<thead>
<tr>
<th>Wire Code</th>
<th>Wire Description</th>
<th>Pin Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10</td>
<td>TPS (−)</td>
<td>U</td>
</tr>
<tr>
<td>W11</td>
<td>TPS (SIG)</td>
<td>T</td>
</tr>
<tr>
<td>W12</td>
<td>TPS (+)</td>
<td>J</td>
</tr>
</tbody>
</table>

With an OHM meter measure the resistance from pin U & T and the resistance should increase as the throttle pedal is depressed.

Note: Mount to a solid frame member not on engine or power package. Locate sensor where temperatures will not exceed 121°C [250°F] (149°C [300°F] intermittent).

Acceptable Loading

Unacceptable Loading

Full Throttle

Hand held diagnostic reading - 100%

Closed Throttle

Hand held diagnostic reading - 0%

Attach cable to OEM supplied cable mounting bracket to prevent cable housing movement. Bracket to be securely affixed to engine. An Axial position adjustment of ± 9.7 [0.38] min is recommended to compensate for system mounting tolerance.

Note: With an OHM meter measure the resistance from pin U & T and the resistance should increase as the throttle pedal is depressed.
Air Throttle Position Sensor Interface

An integral rotary style throttle position sensor is now available from Williams Control, Inc. It must, however, be used in conjunction with the air throttle controls offered by Williams. This TPS system is approved for use with CEEMAT transmissions. The integral TPS/air throttle system is preferred over the previously shown linear TPS system since it requires fewer brackets and hardware to install and no final adjustment is necessary at the OEM level.

The integral TPS/air throttle pedal system shown below is currently being used with mechanically governed engines. A throttle position sensor system is needed with "AT" versions of the CEEMAT only.

Contact Williams Controls, Inc. for more information on pricing and availability. (See Appendix VI for vendor information.)

TPS harness length may be affected by changing from linear TPS system (shown previously) to air throttle TPS system (shown below). Connector interface remains the same for both systems.

Figure 11
Throttle Position Sensor Wiring Diagram

Figure 12

Most Commonly Used Linear Throttle Sensors

<table>
<thead>
<tr>
<th>Eaton Part Number</th>
<th>Cable Length mm [inch]</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-2874</td>
<td>1149.35 [45.250] ± 3.18 [.125]</td>
</tr>
<tr>
<td>K-2876</td>
<td>768.35 [30.250] ± 3.18 [.125]</td>
</tr>
<tr>
<td>K-2875</td>
<td>1530.35 [60.250] ± 3.18 [.125]</td>
</tr>
</tbody>
</table>

22007-7/95
The purpose of the CEEMAT defuel system is to momentarily interrupt fuel supply during a transmission shift sequence to allow for synchronization of the mechanical gear box.

The defuel control is a necessity on “AT” CEEMAT’S with mechanical engines. The defuel control is not necessary on “ATE” CEEMAT’S with electronic engines.

1. If required, the engine defuel system must be Eaton or Engine O.E.M approved.
2. Air Throttle control must be installed per Williams Control, Inc. specifications and this manual.

Air Throttle/Electro-Pneumatic System

The Air Throttle Defuel system shown in Figure 15 is the preferred defuel system since it requires no additional bracketry to install and no final adjustment is required.

This system must be used with an air throttle control. The electronically controlled valve momentarily interrupts the driver throttle input by quickly exhausting the throttle control air allowing the pump to return to the idle position.

1. The engine or vehicle OEM is responsible for mounting the interrupt valve on the throttle control cylinder. Fitting size and port identification are shown in Figure 15.
2. Pedal supply air must be non-regulated (full system pressure).
3. Minimum throttle control air line size when used with CEEMAT defuel system is 1/4” I.D. Air line must be installed with no sharp bends or tie wraps that restrict air flow.
4. The throttle control air line length when used with CEEMAT defuel should be as short as possible with a maximum length of 30’.
5. OEM throttle return springs must be mounted securely to the engine fuel pump throttle arm, not on the throttle control or linkage.
6. When using the air throttle defuel system shown in Figure 15, the integral throttle position sensor system must also be used to insure proper shift quality. Reference page 31.
7. Reference manufacturers specifications for installing air throttle control system.
Fuel Interrupt Functional Test (AT Models)

Normal engine deceleration rate and the engine deceleration rate when controlled by the transmission, should be the same. The transmission looks at information from its own internal speed sensors and must see the engine drop a minimum of 250 RPM/second before it will start to make a shift.

Symptoms for improper installation or adjustment of the fuel interrupt control (throttle dip) may include: no shifting unless the driver lifts foot from accelerator pedal, active fault code #32 (Throttle Dip Solenoid), harsh, jerky, or slow shifting.

Generally, faster engine decel rates will result in quicker and smoother shift quality from the CEEMAT transmission.

a. To determine if the engine deceleration rate falls within an acceptable range for the CEEMAT, manually increase engine speed to governor RPM by pushing on the throttle pedal. When a governor RPM is obtained, quickly remove foot from throttle and measure time it takes engine speed to fall a 1000 RPM. The use of a stopwatch or other accurate means of measurement is recommended. If engine decel rate does not fall within the 250 RPM/second range or a maximum time of 4 seconds to drop from governor RPM down a 1000 RPM, contact engine OEM for possible fuel pump adjustment.

b. To determine if CEEMAT fuel interrupt system is functioning correctly, connect the Eaton hand-held diagnostic tool (P/N 5505011) to the diagnostic (J-1587) port on the dash and select "Throttle Dip Test" from the "Perform Tests" menu. Increase engine speed to governor RPM by manually pushing on the throttle pedal. When a steady governor RPM is obtained, continue holding steady pressure on the throttle and press the number one on the diagnostic tool to activate the CEEMAT throttle dip. Measure the time it takes the engine to fall a 1000 RPM as in step a. If the decel rate does not equal the engine decel rate as measured in step a, adjust or inspect system.
Defuel Control Wiring Diagram

Figure 14

Ground

De-fuel Control

Mechanically Governed
Engines Only

Packard Connector
P/N 12015792
Socket P/N 12010182
Cable Seal P/N 12015193

Packard Connector
P/N 12015792
Socket P/N 12010182
Cable Seal P/N 12015193

J - 1
Cooler Requirements

General Requirements:

1. An external transmission cooler must be used with the CEEMAT™ transmission. The cooler sizing must meet application approval requirements specified in FUL-219.

2. The maximum allowable pressure drop through the oil cooler circuit is 30 PSI.

3. The cooler return line must be routed into the Eaton supplied backpressure valve (Eaton PN A-5754). This valve can be located on either side of the CEEMAT™. See Figures 15 and 16.

4. Either Air-To-Oil or Water-To-Oil coolers are acceptable. Sizing must meet Eaton application guidelines. See cooler application guidelines this section. Refrain from using Air-To-Oil coolers on vehicles in slow or stationary vehicle applications.

5. A minimum SAE #12 cooler hose or comparable tubing must be used for the CEEMAT™ cooler circuit. See Figures 15 and 16.

6. The oil cooler and cooler connecting lines should be free of debris, dirt, grease, etc. before being attached to the transmission. If these conditions exist, cooler and lines must be flushed or cleaned.

7. Cooler connecting lines should be routed in such a way as to prevent kinks or leaks from rubbing on other components. Use high temperature protection as required to protect against heat deterioration.

8. A transmission cooler bypass circuit is not recommended with the use of CEEMAT™ transmissions.

Cooler Application Guidelines

The cooling requirements for the CEEMAT™ transmission models are less severe than a conventional automatic transmission due to the significant increase in mechanical ratio coverage provided with the CEEMAT™ transmission. Each application is screened to identify whether the vehicle under the maximum GCW and gradeability requirements will go into lockup in the starting gear (3rd or 4th gear). This leaves 2nd and 1st (LO) gear for more severe conditions.

The acceptance criteria by Eaton relative to proper cooler sizing is that the vehicle cooling system must be able to maintain a maximum of 300°F converter outlet temperature when operating continuously based on maximum GCW and gradeability specified in FUL 219 (CEEMAT™ Application Approval Form) in the “D” shift lever position with minimum cooling at 1500 BTU/MIN and minimum gradeability in “D” of 8%. The matchup point for most applications falls between the 85% and 87% efficiency point shown on the converter match data (ambient air ≤ 100°F – ram air ≤ 15 mph). This compares to the 80% or 70% point for a conventional automatic depending on the vehicle. Contact Eaton Applications Department for more information on cooler testing and availability of special tools to allow cooler testing flexibility in Direct ratio locked/unlocked and overdrive ratio locked/unlocked.

For most applications, 4th is the highest available starting gear. Applications failing to provide sufficient cooling capacity to allow for the use of 4th as a starting gear will be required to increase cooler sizing or 3rd can be designated as the highest starting gear. Applications which do not have sufficient cooling in 3rd gear will be required to increase cooler sizing. The highest starting gear appropriate for the application will be specified on the Application Approval Form (FUL219). The CEEMAT system will be configured to provide the appropriate starting gears prior to shipment to the OEM. The minimum cooling capacity required for the application will also be specified on the Application Approval Form (FUL219).

NOTE: Figures 15 and 16 show typical water-to-oil and air-to-oil systems only, the actual configuration may vary depending on the application.
Cooling Requirements Oil To Water

Figure 15

Torque Converter Cooling System Without Remote Bypass

NOTE: Optional cooler return located on left side of torque converter housing. Back-pressure relief valve must be located at cooler return location.

WARNING Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Transmission Cooling System With Remote Bypass

For certain applications, the recommended transmission cooler routing is to bypass the engine thermostat system. With this type of cooler routing, transmission oil temperature is more directly related to engine oil temperature. Listed below are conditions which may require the use of a thermostat bypass:

1. Under certain conditions, such as extreme cold temperature operation or extended periods of low speed operation, the engine alone may not generate the amount of heat required to open the thermostat. Without a thermal bypass system, no cooling is provided if needed for the transmission under these conditions.

2. The thermal bypass system will provide faster warming of the transmission oil during cold weather warm-up by circulating the warmer engine block coolant through the transmission cooler.

* NOTE: Optional cooler return located on left side of torque converter housing. Back-pressure relief valve must be located at cooler return location.

WARNING Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
External Transmission Filters

1. The CEEMAT™ transmission uses an internal high pressure oil filter system which utilizes a 25 micron (nominal) replaceable cartridge filter and a .016 wire diameter coarse pick-up screen for larger particles. The high pressure filter cartridge is located down-stream of the pump. Pump flow is maintained in the event of a restricted filter with the use of an internal filter bypass valve.

2. The use of an external transmission filter system is not required or recommended but may be used if a filter bypass system is provided. Cooler flow or minimum delta pressure of 10 PSI @ 1800 RPM must be maintained in the event of a restricted filter. Reference Cooler Flow Verification this section.
Cooling Requirements Oil To Air

NOTE: Optional cooler return located on left side of torque converter housing. Back-pressure relief valve must be located at cooler return location.

![Diagram of Cooling Requirements Oil To Air](image)

WARNING Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Temperature Gauge

Figure 17

Stewart-Warner Temperature Gauge
P/N 467-ED
Sender P/N 334AD

20014-4/92

NOTE: A temperature gauge in combination with an over temperature alarm is required by Eaton. The maximum gauge temperature is 325°F.

100 - 250 Green Normal Operating Range
* 250 - 300 Yellow Intermittent Range
* Above 300 Red Unacceptable Operating Range

* Consult Driver's Instructions "Special Features" For Increased Cooling

WARNING Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.

Transmission Temperature Gauge/Alarm/Sender

1. A transmission temperature gauge with a maximum range of 325°F and an over temperature alarm set at 300°F with sender/switch mounted in the torque converter outlet port is required. See Figures 15, 16, and 17.

2. Although both a temperature gauge and over temperature alarm are required, the CEEMAT™ provides only one port in the torque converter cooler outlet fitting to insert a sending unit or switch. One way to accomplish the addition of both a gauge sender and overtemp. alarm switch is to add a Tee or Cross fitting in the cooler "out" line to create additional ports. Another option is to utilize a temperature module which allows multiple outputs to run a gauge and alarm from a single temperature sender. See Figure 18 "Transmission Temperature Module Circuit" and Figure 19 "Temperature Control Module". Supplier information for the Pacific Insight Electronics temperature control module is listed in Appendix VI (vender list). In addition to the standard two output module (TW1), Insight Electronics also has model TF1, which provides four outputs to run a gauge, alarm, clutch fan, and engine shut down. Contact Pacific Insight Electronics for specific information and pricing.

3. Normal operating temperature, when sensed from the torque converter outlet port, should be below 250°F; however intermittent operating temperatures to 300°F do not harm the transmission.
Transmission Temperature Module Circuit

Figure 18

BACK OF TEMP GAUGE
+12 VOLTS IGNITION

OVER TEMP BUZZER
SWITCH POINT AT 300°F

+12 VOLTS IGNITION

TEMP MODULE

CLUTCH FAN
MODEL TF1 ONLY

ENGINE SHUT
DOWN MODEL TF1
ONLY

TEMP SENSOR

CONVERTER OUTFITTING
Temperature Control Module

Figure 19

<table>
<thead>
<tr>
<th>CAV.</th>
<th>GA</th>
<th>COLOR</th>
<th>DESCRIPT</th>
<th>FUNCTION</th>
<th>TW1</th>
<th>TF1</th>
<th>TERMINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18</td>
<td>YELLOW</td>
<td>FAN SOL. OUT</td>
<td>GND • 250°F</td>
<td>X</td>
<td></td>
<td>12034047</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>WHITE</td>
<td>GAUGE OUTPUT</td>
<td>ANALOG OUTPUT</td>
<td>X</td>
<td>X</td>
<td>12034047</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>BROWN</td>
<td>SENSOR INPUT</td>
<td>+ SENSOR INPUT</td>
<td>X</td>
<td>X</td>
<td>12034047</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
<td>BLUE</td>
<td>ENG SHUT DOWN</td>
<td>GND • 310°F</td>
<td>X</td>
<td></td>
<td>12034047</td>
</tr>
<tr>
<td>E</td>
<td>18</td>
<td>BLACK</td>
<td>GROUND</td>
<td>SYSTEM GROUND</td>
<td>X</td>
<td>X</td>
<td>12034047</td>
</tr>
<tr>
<td>F</td>
<td>18</td>
<td>GREEN</td>
<td>ALARM OUTPUT</td>
<td>GND • 300°F</td>
<td>X</td>
<td></td>
<td>12034047</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>PINK</td>
<td>IGN. INPUT</td>
<td>+12V IGN CN</td>
<td>X</td>
<td>X</td>
<td>12034047</td>
</tr>
<tr>
<td>H</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oil Cooler Return Options For Low-Profile Oil Pan

All require the use of back pressure valve - A-5754 (provided):

1) Left front top edge of oil pan - pointing straight up (standard location)

2) Optional right front oil pan location - points toward front of trans. Back pressure valve must be relocated to this position.

3) Optional right front top edge of oil pan - pointing straight up, only available if left side dipstick tube is used. Back pressure valve must be relocated to this position.

Figure 20
Cooler Flow Verification

The CEEMAT transmission supplies a minimum of 12 GPM oil flow to the transmission cooler @1500 RPM if cooler restriction falls within Eaton limits. For new cooler installations, the following test is used to check cooling system restriction.

Test Tools Required

- 0-100 PSI pressure gauge on LUBE circuit
- 0-100 PSI pressure gauge on CONVERTER OUTLET circuit

Test Conditions

- 70-120°F Transmission Oil Temperature
- Transmission shift control in Neutral

<table>
<thead>
<tr>
<th>Engine RPM</th>
<th>Lube Press</th>
<th>Conv Out Press</th>
<th>Delta Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gov. RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acceptance Criteria

Calculate Delta Pressure:

\[(\text{Lube Press} - \text{Conv Out Press} = \text{Delta Press})\]

Minimum Delta pressure @ 1800 RPM of 10 PSI.

If Delta pressure is less than 10 PSI cold, warm transmission in drive at stall (< 1500 RPM) until transmission temperature warms to 180°F. Minimum Delta pressure should be 10 PSI at 1800 RPM (in neutral).
1. The dipstick and fill tube design must provide an acceptable means of filling and checking the transmission oil level. New dipstick and tube designs require approval and/or validation by Eaton engineering if supplied by the O.E.M.

2. A supporting bracket to eliminate vibration is required at the upper end of the dipstick tube. The bracket must be attached to the transmission or engine and not to the frame or body. See figure 27.

NOTE: Support bracket hardware is provided on all CEEMATs as shown in figure 27. Alternate designs/hardware may be required to provide adequate tube support.

3. A minimum overall vertical rise of 14" must be maintained above the converter housing oil pan mounting surface for oil filling.

NOTE: An initial oil fill of seven gallons (minimum) is required prior to starting the engine. This level as well as the static oil level is approximately 12" above the converter housing oil pan mounting surface.

4. The first section of the dipstick tube must be vertical from the oil pan connector to a minimum of 2.5" above the converter housing oil pan mounting surface to insure accurate level readings.

NOTE: Completely full, hot and running the transmission oil level is approximately 1.25" above the converter housing oil pan mounting surface.

5. Horizontal or near horizontal runs, sharp tight and excessive bends are discouraged in the tube design as they adversely affect oil fill time and accurate level readings.

6. Torque dipstick tube fitting (1 5/8-12) to 60-70 Lb-ft. See figure 27.

7. Torque dipstick tube nut (1 5/16-12 JIC 37°) to 50-60 Lb-ft. See figure 27.

8. Actual oil level must be within Eaton specifications according to the dipstick readings.

NOTE: The reference drawing in this section shows typical dipstick and tube installation. Bracket hardware shown is standard on all CEEMAT models, but may be omitted if alternate support design is used.

NOTE: Optional left side tube mounting is available, contact sales account manager for additional information.

9. A label identifying OEM filled oil is recommended near oil fill opening. See Figure below for example.

CHECK OIL LEVEL AT ENGINE IDLE IN NEUTRAL

FACTORY FILLED WITH DEXRON® II LUBRICANT

Eaton® Fuller® Transmissions
Make sure oil is within dipstick marks for the corresponding oil temperature. Oil should be checked at idle speed in the neutral position using the corresponding temperature band. Cold checks can be performed when the oil temperature is 60–120°F. The oil level should be within the dipstick "cold" band. Additional checks can be made with the transmission at operating temperature by using the "hot" band on the opposite side of the dipstick. The "hot" band temperature range is 180–220°F.

Standard Aluminum (Deep) Tube - 5500503

Coat with zinc chromate per ASTM B-633-78 SC2 type II, optional: prime paint per TES-005, except for interior and -B-

Bend radii and locations ±12 [3.0]
Standard Low Profile Oil Pan Dipstick - 5501016

Figure 23

Standard Low Profile Oil Pan Dipstick Tube - 5500511

Figure 24
Dipstick Validation

Test Equipment: (available from Eaton application group)
- Oil
 - “See-thru” Tubing 1 inch I.D. = 8 Inch Long
- Hose Clamp - Adjustable up to 1 1/4 Inch Diameter
- SAE 070202 Male Elbow (JIC 37 Degree)
- Dipstick Sample
- Tube Sample
- Scale
Reference figure 25

Procedure:
1. Securely clamp the “see-through” tubing to the 3/4 - 18 pipe male end of the elbow.
2. Mark the dimension on the “see-through” tube per figure 25 using the proper transmission model requirements.
3. Affix the elbow/tube assembly in a suitable vice or other clamp orienting the axis of the 1 5/16 JIC 37 degree male flare horizontally. The “see-through” tube must be oriented vertically.
4. Attach the dipstick tube to the elbow orienting the dipstick tube to the elbow per the proper O.E.M installation drawing or instructions, then tighten adequately to seal and retain this orientation. See figure 25.
5. Pour oil into the open “see-through” tubing until the level reaches the appropriate mark determined in step 2 above.
6. Insert the dipstick into the tube fully.
 6a. Did the oil level raise in the “see-through” tube as the stick was inserted?
 Yes ___ >1/8 inch No ___<1/8 inch
 If Yes - A means must be provided to vent the stick.
 If No - Proceed to step 6b.
 6b. Remove the dipstick from the tube and observe the oil witness mark.
 The oil witness should be at the “FULL” line of the dipstick “HOT” range. If the witness is within 1/8 inch from this line, the dipstick is considered validated. If the oil witness is greater than 1/8 inch from the “FULL” line of the dipstick “HOT” band, the parts and/or drawings must be changed.
7. The corresponding “LOW” line of the dipstick “HOT” range should be 1 inch below the oil witness.
8. The “FULL” line of the dipstick “COLD” range should be 1 5/8 inch below the oil witness.
9. The corresponding “LOW” line of the dipstick “COLD” range should be 2 5/8 inch below the oil witness.
Dipstick and Dipstick Tube Information

Dipstick Validation Standard Low Profile Oil Pan

Figure 26

Alternate Dipstick tubes can be used but must meet tube requirements.

Dipstick calibration procedure for all models with low profile oil pan are shown in the illustration below:

Dipstick Validation Rotated Pan

Figure 27
Dipstick Tube Mounting

Figure 28

NOTE: Eaton Dipstick Mounting Bracket Design Shown.

WARNING

Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Lubrication Requirements

Before working on a vehicle, place the transmission in neutral, set the parking brakes, and block the wheels.

1. Make sure oil is within dipstick marks for the corresponding oil temperature.

NOTE: Oil should be checked at idle in neutral using the corresponding temperature band.

2. Cold checks can be performed when the oil temperature is 60-120°F. The oil level should be within the dipstick "cold" band.

3. When the vehicle is at operating temperature 180-220°F, the oil level should be within the dipstick "hot" band located on the opposite side of the dipstick.

4. The operational level should always be within the appropriate temperature bands on the dipstick. The exact amount of oil depends on the transmission inclination and model.

5. Insufficient oil damages the pump and other components and can affect the function and reduce the life of the transmission.

6. **DO NOT OVERFILL.** This causes overheating, loss of fuel economy and possibly not shifting.

7. When adding oil, types and brands of oil should not be mixed because of possible incompatibility.

8. When changing oil viscosity to Arctic oil or alternate viscosity ranges, follow the recommended transmission oil flush procedure outlined in the CEEMAT service manual.

9. Use clean oil and clean containers when filling the transmission. Containers that have been used for anti-freeze or water should not be used for transmission oil.

10. Oil must meet MIL-L-2104E specifications or Dexron® II. Oil must be filled to the proper oil level prior to O.E.M shipment.

11. A label identifying OEM filled oil is recommended near oil fill opening. See Figure below.

![CHECK OIL LEVEL AT ENGINE IDLE IN NEUTRAL](image)

FACTORY FILLED WITH DEXRON® II LUBRICANT

Eaton® Fuller® Transmissions

WARNING
Oil Fill Procedure

1. Remove the dipstick and add a minimum of seven (7) gallons (27 liters) of the prescribed oil through the fill tube (dipstick tube).

2. Place the transmission in neutral position and apply the parking brakes. Start the engine and let idle for five (5) minutes, (this allows the oil to circulate and fill the torque converter, main case, and cooling system).

3. Add oil as needed to obtain the correct level at the proper temperature range.

NOTE: Approximate total oil quantity needed is 44 quarts (42 liters), this varies depending on cooling system capacity. See chart below.

4. Increase the engine idle slowly to 1500 RPM for two (2) minutes. Now check the oil level at normal idle speed in neutral, add or drain oil to obtain a level at the proper temperature range on the dipstick.

5. Replace the dipstick and tighten securely.

<table>
<thead>
<tr>
<th>Transmission Oil Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial fill 42.1 Liters or 89 pints or 11.1 gals</td>
</tr>
<tr>
<td>Refill 34.1 Liters or 72 pints or 9 gals.</td>
</tr>
</tbody>
</table>

\[
\text{Vehicle Cooling System Capacity} \quad \text{Varies depending upon application}
\]

\[
\text{Total Transmission Oil Capacity (OEM Responsibility)} \quad \text{Varies depending on oil cooler capacity}
\]
Lubrication Change and Inspection

HIGHWAY USE

<table>
<thead>
<tr>
<th>Mileage</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 1,000 to 1,500 miles</td>
<td>Change transmission oil, filter, and strainer on new units.</td>
</tr>
<tr>
<td>Every 2,500 miles</td>
<td>Inspect lubrication level. Check for leaks.</td>
</tr>
<tr>
<td>Every 50,000 miles or 1 year</td>
<td>Change transmission lubricant and filter. Check the strainer for dirt.</td>
</tr>
</tbody>
</table>

OFF-HIGHWAY USE

<table>
<thead>
<tr>
<th>Hours</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 30 hours</td>
<td>Change transmission oil, filter, and strainer on new units.</td>
</tr>
<tr>
<td>Every 40 hours</td>
<td>Inspect lubrication level. Check for leaks.</td>
</tr>
<tr>
<td>Every 500 hours</td>
<td>Change transmission lubricant and filter where severe dirt conditions exist.</td>
</tr>
<tr>
<td>Every 1,000 hours</td>
<td>Change transmission lubricant and filter. (Normal off-highway use.)</td>
</tr>
</tbody>
</table>

Recommended Lubricant

<table>
<thead>
<tr>
<th>Type</th>
<th>Grade (SAE)</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4 Type MIL-L-2104E</td>
<td>10W</td>
<td>Above 0°F (-32°C)</td>
</tr>
<tr>
<td>Dextron® II</td>
<td></td>
<td>Above 0°F (-32°C)</td>
</tr>
<tr>
<td>Arctic Oil 0W-20</td>
<td></td>
<td>Below 0°F (-32°C)</td>
</tr>
</tbody>
</table>

Minimum Temperature For Operating Transmission

- SAE 10W or Dextron® II & III
- SAE 0W-20
1. A high quality commercially available air dryer is required in the air supply line before the CEEMAT transmission.

2. Minimum air requirement for the CEEMAT transmission is 90 PSI.

3. A minimum of 3/8 inch diameter air supply line is required for the CEEMAT.

4. The CEEMAT air supply is required to be routed from the air tank which supplies air to either the front or rear vehicle service brakes with a gauge indicator in the cab. See figure 29.

5. Transmission air lines should not be routed or attached to bottom air tank fittings to avoid any chance of ingesting moisture.

6. Care must be used when routing the air supply to avoid kinks and close contact to heat sources.

7. The CEEMAT air supply must be connected to the air filter/regulator mounted on the ECU cover, see figure 29.

NOTE: The filter/regulator should not be removed during installation.

8. Air additives such as alcohol or deicer should not be permitted to enter the CEEMAT air supply. Additives could cause damage to air system components which could lead to degraded transmission performance.
Air Supply/Dryer Requirements

Figure 29

Air Filter/Regulator
3/8 NPT Port

Minimum 3/8" ID Air Line Required

Right Side View of Transmission

A or B

Rear Service Tank
"A"

From Compressor

High Quality Air Dryer

Front Service Tank
"B"

Wet Tank From Dryer

WARNING
Failure to use proper parts or failure to follow installation instructions could lead to personal injury or property damage.
Shift Control Installation (Electronic Shifter)

The CEEMAT Electronic Shifter provides many benefits over conventional mechanical (cable) systems. Along with simplified installation and the elimination of adjustment problems, the CEEMAT Electronic Shifter provides several features such as: dual station capability, automatic neutral (quick-to-neutral), and application specific inputs and outputs such as auto pac mode for refuse trucks.

1. The CEEMAT Electronic Shifter should be situated in the cab in a functional, easily accessible location in relation to the driver.

2. The shift tower and shift lever should not interfere with other vehicle related controls or accessory features located on the dash or surrounding area.

3. The CEEMAT Electronic Shifter was designed to fit into existing common shift control towers. The dimensions for the CEEMAT Electronic Shifter are shown on the next page.

4. The OEM is responsible for providing the electrical wiring harness for the CEEMAT Electronic Shifter. Harness requirements are listed throughout the following section. Key requirements are repeated in Appendix I.
Electronic Shifter

Figure 30

CUTOUT FOR MOUNTING

Packard 24-Way Connector
Mating Connector Parts No. 12110088
Secondary Lock Part No. 12047900
Secondary Lock Part No. 12047901
Terminal Part No. 12089649

20068-10/94
Shown below are the CEEMAT Electronic Shift Levers currently available. Other configurations are available, subject to approval.

Examples:

> A 3 position L - N - RL lever (useful for remote locations where a creep gear is required).
> Drive configured for 7th gear max (useful for limiting road speed in refuse work stations).

Contact Eaton CEEMAT Application Engineering for details:

Phone: (616) 342-3475 FAX: (616) 342-3487

<table>
<thead>
<tr>
<th>Eaton Assy No.</th>
<th>Lever Configuration</th>
<th>Drive Gears</th>
<th>Orientation Mounting</th>
<th>Reverse Tower Assy No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6573</td>
<td>RH RL N D 3 2 1 4-O.D.</td>
<td>Right Front</td>
<td>A-6695</td>
<td></td>
</tr>
<tr>
<td>A-6574</td>
<td>RH RL N D 3 2 1 3-O.D.</td>
<td>Right Front</td>
<td>A-6667</td>
<td></td>
</tr>
<tr>
<td>A-6575</td>
<td>1 2 3 D N RL RH 4-O.D.</td>
<td>Left Front</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-6576</td>
<td>1 2 3 D N RL RH 3-O.D.</td>
<td>Left Front</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-6596</td>
<td>RL N D 3 2 1 4-O.D.</td>
<td>Right Front</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-6597</td>
<td>1 2 3 D N RL 4-O.D.</td>
<td>Right Rear</td>
<td>A-6696</td>
<td></td>
</tr>
<tr>
<td>A-6598</td>
<td>RH RL N D H 2 1 4-O.D.</td>
<td>Right Front</td>
<td>A-6694</td>
<td></td>
</tr>
<tr>
<td>A-6599</td>
<td>1 2 H D N RL RH 4-O.D.</td>
<td>Right Rear</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-6600</td>
<td>RL N D 3 2 1 3-O.D.</td>
<td>Right Front</td>
<td>A-6697</td>
<td></td>
</tr>
<tr>
<td>A-6615</td>
<td>1 2 3 D N RL RH 4-O.D.</td>
<td>Right Rear</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-6616</td>
<td>1 2 3 D N RL 4-O.D.</td>
<td>Left Front</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>A-7120</td>
<td>RL N D 3 2 1 4-7 Right Front</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
H = Hold (No Upshifts or Downshifts, 3rd gear start)

Mounting orientation designates hand used to operate lever.
The CEEMAT electronic shift control can be supplied to the OEM mounted in a shift tower. This package includes the following: 1) shift tower, 2) wire harness with bulkhead connector that will be mounted in the floorboard, and 3) electronic shift control. The bulkhead connector is a Deutsch (Part No. HD36-18-14PN). The mating connector is a Deutsch (Part No. HD34-18-14SN) and the terminal (Part No. 0462-201-16141). Below is a pin out of the OEM vehicle interface harness.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Battery Bus</td>
</tr>
<tr>
<td>B</td>
<td>Ignition Bus</td>
</tr>
<tr>
<td>C</td>
<td>Chassis Ground</td>
</tr>
<tr>
<td>D</td>
<td>Lamp Ground</td>
</tr>
<tr>
<td>E</td>
<td>+J-1922 Data Link</td>
</tr>
<tr>
<td>F</td>
<td>-J-1922 Data Link</td>
</tr>
<tr>
<td>G</td>
<td>Dimmer Control</td>
</tr>
<tr>
<td>H</td>
<td>Start signal from Ignition Switch</td>
</tr>
<tr>
<td>J</td>
<td>Starter Solenoid</td>
</tr>
<tr>
<td>K</td>
<td>+12vdc (back-up)</td>
</tr>
<tr>
<td>L</td>
<td>Back-up</td>
</tr>
<tr>
<td>M</td>
<td>Auto Neutral (Aux Input)</td>
</tr>
<tr>
<td>N</td>
<td>Trans-In-Gear (Aux Output 1)</td>
</tr>
<tr>
<td>P</td>
<td>Service Light (Push Button Only)</td>
</tr>
</tbody>
</table>

20073-7/95
Electronic Shifter — Single Station

Figure 31

Typical Wiring Harness
Wire Diagram For Electronic Shifter

Figure 32

OEM Responsibility

Shift Control System (Electric)

BATTERY POWER (UNSWITCHED POWER) run to the battery or starter.

IGNITION POWER (SWITCHED POWER) run to the main power lead that feeds the ignition bus.

RUN TO START SIGNAL FROM IGNITION SWITCH

START ENABLE RELAY

RUN TO STARTER SOLENOID

REVERSE RELAY

RUN TO +12 OR +24 VDC

RUN TO BACKUP LIGHT OR WARNING DEVICE

AUX OUTPUT 1

AUX OUTPUT 2

J-1922 DATA LINK

IGNITION POWER (SWITCHED POWER) run to the main power lead that feeds the ignition bus.

RUN TO START SIGNAL FROM IGNITION SWITCH

STARTER SOLENOID

RUN TO +12 OR +24 VDC

RUN TO BACKUP LIGHT OR WARNING DEVICE

AUX OUTPUT 1

AUX OUTPUT 2

J-1922 DATA LINK

BOSCH RELAY SOCKET:
See appendix for part numbers.

PACKARD CONNECTOR:
See appendix for part numbers.

21012-7/95
Power Lead Connections

Figure 33

NOTE: Circuit Breaker type 1 or 2 are acceptable. Chassis ground can be tied to the Cab ground instead of CEEMAT ground as shown. If the CEEMAT circuit breakers are not accessible use 5 AMP circuit breakers. Wire as shown above.

WIRE TABLE

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vign</td>
<td>Ignition Bus</td>
<td>A7</td>
</tr>
<tr>
<td>Vbat</td>
<td>Battery Bus</td>
<td>A5</td>
</tr>
<tr>
<td>GND</td>
<td>Chassis Ground</td>
<td>B1</td>
</tr>
</tbody>
</table>

PACKARD CONNECTOR:
See appendix for part numbers.

CAUTION: Main vehicle battery cable (+) or (-) must be disconnected prior to any type of welding on vehicle.

Ignition Bus Circuit Breakers
(Automatic Resetting Type Required)
15 AMP for 12 Volt System
10 AMP for 24 Volt System
Battery Bus Fuse
30 AMP In Line Fuse
Unless the CEEMAT circuit breakers are not accessible then use 5 AMP.

21013-7/95
Start Enable Relay

Shifter will come with Start Enable Relay mounted on its side. See shifter diagram in appendix for mating socket and terminals. The OEM can remotely mount the Start Enable Relay. The relay must still be wired the same as in the diagram. However Pin B2 "Ground for Relay" can be omitted and relay can be grounded on chassis.

The Start Enable relay will allow the engine to crank when the shift lever is in "N" (neutral) AND the transmission is in NEUTRAL. The NS_LATCH will keep the Start Enable relay energized during engine crank if the voltage drops below the required level to keep the shift lever powered.

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS_LATCH</td>
<td>Latch for Relay</td>
<td>A2</td>
</tr>
<tr>
<td>N_START</td>
<td>+Start Relay Coil</td>
<td>A1</td>
</tr>
<tr>
<td>AUX_GND</td>
<td>Ground for Relay</td>
<td>B2</td>
</tr>
</tbody>
</table>
Reverse Relay

Shifter will come with REVERSE Relay mounted on its side. See shifter diagram in appendix for mating socket and terminals. The OEM can remotely mount the REVERSE Relay. The relay must still be wired the same as in the diagram. However Pin B6 "+ POWER for Relay" can be omitted and relay can be wired to ignition power.

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV_SPLY</td>
<td>+ 12VDC FOR RELAY</td>
<td>B6</td>
</tr>
<tr>
<td>REV_RLY</td>
<td>GND output</td>
<td>B5</td>
</tr>
</tbody>
</table>

21016-7/95
Dimmer Control Input

Figure 36

![Diagram of Dimmer Control Input](image)

- **GAUGES**
- **DASH LIGHTS**
- **DASH LIGHTS GROUND.**

WIRE TABLE

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDASH</td>
<td>Dimmer Control</td>
<td>B4</td>
</tr>
<tr>
<td>LAMP_GND</td>
<td>Lamp ground</td>
<td>B12</td>
</tr>
</tbody>
</table>

PACKARD CONNECTOR:
See appendix for part numbers.

Connect VDASH to the dash lights. This input will dim the light on the shift lever. Pin B12 "LAMP_GND" can be omitted if the shift lever chassis is grounded.
Auxiliary Inputs and Outputs

Figure 37

<table>
<thead>
<tr>
<th>Pin Location</th>
<th>Wire Description</th>
<th>Function</th>
<th>Input/Output</th>
<th>Software Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>Aux Out 1</td>
<td>Trans In Gear</td>
<td>Output +12V @ 1A +24V @ .5A</td>
<td>No</td>
</tr>
<tr>
<td>A4</td>
<td>Aux Out 2</td>
<td>Application Specific</td>
<td>Output +12V @ 1A +24V @ .5A</td>
<td>Yes</td>
</tr>
<tr>
<td>B10</td>
<td>Aux 3_IN</td>
<td>Auto Neutral</td>
<td>Input Ground</td>
<td>No</td>
</tr>
</tbody>
</table>
Auto Neutral Feature

An active input signal here will command the CEEMAT to neutralize, (such as the application of the park brake). When auto neutral is requested, the CEEMAT will neutralize the transmission, will shift to neutral, and disengage the interrupt clutch.

Trans In Gear Output

Trans in gear output will have an active +12 VDC/24 VDC whenever the CEEMAT shift lever is not in neutral.
Electronic Shifter Communication Enable Pin

Figure 40

Electronic shifter communication enable pin must be connected to ground in order to make the shaft lever active. In a dual station application, a switch will be incorporated. See "Dual Station" for more information.
J-1922 Data Link

The diagram above is a recommended method of connecting the J-1922 Data Link when using a mechanically governed engine. The J-1922 Data Link must be a twisted pair with one twist per inch.

WIRE TABLE

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+J1922</td>
<td>+ J1922 DATA LINK</td>
<td>A10</td>
</tr>
<tr>
<td>-J1922</td>
<td>- J1922 DATA LINK</td>
<td>A9</td>
</tr>
</tbody>
</table>
J-1922 Data Link (Electronically Governed Engines)

Figure 42

WIRE TABLE

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+J1922</td>
<td>+ J1922 DATA LINK</td>
<td>A10</td>
</tr>
<tr>
<td>-J1922</td>
<td>- J1922 DATA LINK</td>
<td>A9</td>
</tr>
</tbody>
</table>

The diagram above is a recommended method of connecting the J-1922 Data Link when using an electronically governed engine. The J-1922 Data Link must be a twisted pair with one twist per inch. For more information on connecting the J-1922 Data Link to electronically governed engines refer to the CEEMAT Installation Guide, TRIG-0020.
Electronic Shifter — Dual Station

Figure 43
Wire Diagram Dual Station

Figure 44

For start enable relay, reverse relay, and aux input, refer to the wiring diagrams in this section.

The J-1922 Data Link can use the same splice pack as illustrated for J-1922 Data Link (electronically governed engines).
ESL_ENABLE For Dual Station

Figure 45

SWITCH LOCATED ON DASH SPDT (LOW CURRENT)

#1 CAB RIGHT

#2 WORK LEFT

B9 B3

ELECTRONIC SHIFT CONTROL

STATION #1 CAB OR (RIGHT)

PACKARD CONNECTOR:
See appendix for part numbers.

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESL_COMM</td>
<td>ESL_COMM-ENABLE</td>
<td>B9</td>
</tr>
<tr>
<td>AUX_GND</td>
<td>ESL GROUND</td>
<td>B3</td>
</tr>
</tbody>
</table>

For a Dual Station configuration ESL_Enable Pin B9 must be connected to ground through a switch as shown in the diagram above. The active station has Pin B9 grounded.

21023-7/95
Start Enable Relay For Dual Station

Figure 46

RUN TO START SIGNAL FROM IGNITION SWITCH

RUN TO STARTER SOLENOID

ELECTRONIC SHIFTER ECU
STATION #1 (LEFT)

ELECTRONIC SHIFTER ECU
STATION #2 (RIGHT)

PACKARD CONNECTOR:
See appendix for part numbers.

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS_LATCH</td>
<td>Latch for Relay</td>
<td>A2</td>
</tr>
<tr>
<td>N_START</td>
<td>+Start Relay Coil</td>
<td>A1</td>
</tr>
<tr>
<td>AUX_GND</td>
<td>Ground for Relay</td>
<td>B2</td>
</tr>
</tbody>
</table>

21024-7/95
Reverse Relay For Dual Station

Figure 47

RUN TO +12 OR +24 VDC
RUN TO BACKUP LIGHT OR WARNING DEVICE

ELECTRONIC SHIFTER ECU
STATION #1 (LEFT)

PACKARD CONNECTOR:
See appendix for part numbers.

WIRE TABLE

<table>
<thead>
<tr>
<th>WIRE CODE</th>
<th>WIRE DESCRIPTION</th>
<th>PIN LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV_SPLY</td>
<td>+ POWER FOR RELAY</td>
<td>B6</td>
</tr>
<tr>
<td>REV_RLY</td>
<td>GND output</td>
<td>B5</td>
</tr>
</tbody>
</table>

21025-7/95
Overview—Available PTO Locations and Requirements

Mechanically Governed Engines / CEEMAT AT

The CEEMAT transmission provides both a 6-bolt and an 8-bolt SAE PTO opening on the main case. Both of these openings are rated at 500 Lb·ft of torque.

Figure 48

NOTE: Examine PTO installation at 8-bolt location for envelope interference with sump return tube. Do not remove sump return tube for PTO installation.

Electronically Governed Engines / CEEMAT ATE

The CEEMAT provides an opening in the rear auxiliary section for mounting an extended rear countershaft power take-off and either/or (one of the two but not both) the 6-bolt or 8-bolt openings depending on where the transmission inertia brake assembly is mounted. The 8-bolt opening is the standard location for the inertia brake if not specified. Reference figure on page 79 for inertia brake locations.

PTO's mounted in these positions are normally intended to be used with the transmission in neutral. The transmission interrupt and lockup clutches are engaged when the PTO ball switch is engaged; for this reason transmission electrical interface is required with countershaft driven PTO systems. The transmission will not engage a drive gear position until the PTO is disengaged or vehicle speed is under 3 m.p.h. If the PTO is engaged while in a drive position, the transmission shifting will be inhibited until the PTO is disengaged.
The normal sequence for engagement and operation of a countershaft driven PTO is as follows:

1. The operator stops the vehicle with the shift selector in a drive position or selects a drive position from neutral to stop the rotation of the main-case drive gearing.

2. With the main-case gearing (PTO drive gear) stopped, the operator engages the PTO and then selects neutral. The proper engine speed for driving the accessory equipment can then be obtained.

3. To drive the vehicle after PTO operation is complete, the PTO must be disengaged to allow for transmission drive gear engagement.

4. For limited mobile operation with a countershaft driven PTO the transmission can be shuttle shifted between reverse/neutral/drive if the vehicle speed is under 3 m.p.h.

Reference "Space Claim" section for specific space limitations for vehicle frame rails, exhaust routing, transmission case, etc. Reference manufacturer's information section or your local PTO supplier for specific model and parts availability.

Model ATE (Electronic Engine) PTO Locations

Figure 49
Engine Driven PTO's

A 6 bolt SAE PTO opening is available if an optional SAE #1 non-nodal mount converter housing is used. This “live” PTO opening is rated at 250 Lb-ft of torque. This option is available on both AT and ATE CEEMAT models.

PTO's mounted in this location are normally used where unlimited mobile PTO operation is needed. The PTO is driven through an idler gear off the impeller pump drive gear which provides operation independent of the transmission. This type of PTO configuration requires no electrical interface with the transmission and can be engaged whenever PTO operation is needed regardless of what gear the transmission is in (pending PTO limitations). Hydraulic interface with the transmission may be needed depending on PTO requirements, contact PTO manufacturer for additional information.

Typical applications which may require unlimited mobile operation are refuse packers, snow plows, spreaders, dump trucks, sweepers, etc.

Reference Space Claim section for specific space limitations for vehicle frame rails, cab floor, etc. Reference Manufacturer's information section or your local PTO supplier for specific model and parts availability.

Figure 50

NOTE: Low profile (90°) strain relief harness connector must be used at main transmission connector location.
Split-Shaft PTO Interface with CEEMAT™

Split shaft PTOs for pumper/vacuum operations require special consideration when used with CEEMAT transmissions.

1. The transmission must be specifically ordered for this application to allow the direct ratio function while in pumper/vacuum mode. The CEEMAT must be configured with the proper electronic software prior to shipment from Eaton.

2. A specific pressure switch or ball switch must be used on the PTO to supply the transmission with an electrical signal when in pump/vacuum mode (see electrical interface requirements this section).

Power Take-Off Availability w/Low Profile Oil Pan Option

Power take-offs are not available at the 8-bolt bottom location when using the low profile oil pan option due to pan interference.

Available locations are as follows:

Figure 51

CEEMAT “AT” Models
- 6-bolt (right side) countershaft opening
- 6-bolt (converter housing) engine driven opening.

CEEMAT “ATE” Models
- 6-bolt (right side) countershaft opening
- 6-bolt (converter housing) engine driven opening.
- Rear (thru-shaft) countershaft driven location.

20058-4/94

20057/a-7/95
PTO Selection

1. What application is the vehicle being purchased for? Proper thought should be given at the OEM level to properly engineer and prepare the vehicle for the best possible PTO for the job.

2. Determine what type of PTO is best for the job. Special requirements? Does the torque and horsepower capability meet the requirements? Get the PTO manufacturer involved to determine available models compatible with the CEEMAT.

3. Determine where the PTO must be mounted (Top - engine driven, bottom left, bottom right).

4. Consider vehicle space restrictions, PTO space requirements. Cab floor height, frame rail clearance, exhaust, etc., should be taken into consideration.

5. Indirect PTOS; i.e.: front engine, rear engine PTOS (REPTO), split shaft PTOS, etc., must be verified compatible with CEEMAT prior to planned installation. Specific options may be necessary to align CEEMAT with these systems.

6. Consider the possibility for propeller shaft clearance if a remote-mount PTO pump is to be used.

7. Interface harness and two-pole dash light switch must be used with CEEMAT counter shaft driven PTOS.

Figure 52

Single speed-single gear: the simplest and least expensive PTO. Used where speed and rotation are satisfactory and torque capability meets requirements. Single gear PTOS often encounter transmission obstructions.

Reversible PTOS: used in product pump applications where two-way pumping is desirable. Reverse rotation may be inhibited by shift rod clearance when used with CEEMAT.

Single speed-double gear: PTO for SAE 8-bolt opening, easy to assemble and reassemble into many configurations, available in many speed ratios. Also available with direct mounted pump options.

Clutch-pack-type: provides added protection against transmission gear damage during initial PTO engagement. (Engine driven top opening).
Model ATE Inertia Brake Locations

Figure 53

8-Bolt Position (STD)
and
6-Bolt Position (Optional)
Chart of Recommended Vocations

<table>
<thead>
<tr>
<th>PTO Applications</th>
<th>6-Bolt Engine Driven</th>
<th>*8-Bolt C/S Bottom</th>
<th>*6-Bolt C/S Right Side</th>
<th>*Thru-Shaft C/S Rear Mounted (ATE Only)</th>
<th>*Split Shaft Driveline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dumps-mobile operation</td>
<td>X fully mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td></td>
</tr>
<tr>
<td>Dumps-stationary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuse packers front/rear</td>
<td>X fully mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td></td>
</tr>
<tr>
<td>Roll-offs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refuse packers side loaders</td>
<td>X fully mobile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk delivery tankers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpers/vacuum stationary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpers/vacuum mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td></td>
</tr>
<tr>
<td>Utility-crane, aerial devices, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road repair, stripers, etc. (mobile)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire, emergency, mobile pumps, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car carriers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wreckers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow blowers</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spreaders-salt, fertilizer, etc.</td>
<td>X fully mobile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous duty-stationary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy haulers/lowboys</td>
<td>X</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td>X limited mobile</td>
<td></td>
</tr>
</tbody>
</table>

* requires transmission electrical interface

Note #1: Contact PTO manufacturer for specific application information and availability. This chart represents a general overview for reference purposes only.

Note #2: All PTO information affecting transmission installation or operation must be included, if available, on Eaton Automated Transmission Application Approval Form FUL-219.
Electrical Interface Requirements

Countershaft driven PTO's:

All countershaft driven Power Take-off's (including rear mounted throughshaft PTOs) mounted on CEEMAT transmissions must provide electrical interface with the transmission. A two-wire ball switch must be used in place of the standard single wire switch normally used to signal the PTO dash light. Contact PTO manufacturer for CEEMAT interface switch kit. Reference figure below for countershaft driven PTO electrical interface diagram.

A two wire transmission harness extension is normally provided for countershaft PTO interface. This connector should be located near the main transmission interface connector located at the top, front, left (drivers side) of the transmission.

The CEEMAT transmission must have an input signal from the countershaft driven power take-off when it is active. In this active state, the torque converter clutch is activated to drive the transmission main box countershafts. All upshifting will be inhibited. Countershaft driven PTOs are normally used in stationary applications although shuttle shifting between drive-neutral-reverse is allowed at vehicle speeds under 3 m.p.h. to provide limited mobile operation. Incorrect or no PTO interface signal to the transmission will result in no torque converter engagement and therefore no PTO operation.

Figure 54

![Diagram of PTO interface](image)

NOTE: If a countershaft P.T.O. is not used, tie P.T.O. connector out of way. This P.T.O. input is not used with an engine P.T.O.

WIRE TABLE

<table>
<thead>
<tr>
<th>Wire Code</th>
<th>Wire Description</th>
<th>Pin Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5</td>
<td>P.T.O.</td>
<td>D</td>
</tr>
<tr>
<td>W1A</td>
<td>P.T.O. (+)</td>
<td>Splice with Pin K</td>
</tr>
</tbody>
</table>

PTO Table

<table>
<thead>
<tr>
<th>PTO Type</th>
<th>Chelsea Kit #</th>
<th>Muncie Kit #</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 & 8 Bolt Mech Shifted</td>
<td>440, 340, 35 & 488 Series</td>
<td>TG6S/TG8S K1434-14</td>
</tr>
<tr>
<td>6 & 8 Bolt Air Shifted</td>
<td>230 & 270</td>
<td>329135X</td>
</tr>
<tr>
<td>Rear Aux Countershaft</td>
<td>540 Series</td>
<td>329107X</td>
</tr>
<tr>
<td>Splitshaft</td>
<td>912 Series</td>
<td>329185X</td>
</tr>
</tbody>
</table>
Countershaft PTO Wiring Diagram

Figure 55

IGNITION POWER (SWITCHED POWER) RUN TO MAIN POWER LEAD THAT FEEDS THE IGNITION BUS

A

B

W1A

W1

W5

J - 1
Split-Shaft PTO’s

All split-shaft power take-off’s for pump/vacuum applications with CEEMAT must provide electrical interface (electrical signal) to the transmission.

Split shaft PTOs for pumper/vacuum operations require special consideration when used with CEEMAT transmissions.

1. The transmission must be specifically ordered for Split Shaft PTO application to allow the direct ratio function while in pumper/vacuum mode. The CEEMAT must be configured with the proper electronic software prior to shipment from Eaton.

2. A specific pressure switch or ball switch must be used on the PTO to supply the transmission with an electrical signal when in pump/vacuum mode (see electrical interface requirements this section).

Split-Shaft PTO Wiring Diagram

![Diagram](image-url)

Figure 56

IGNITION POWER (SWITCHED POWER) RUN TO MAIN POWER LEAD THAT FEEDS THE IGNITION BUS

W1

W1A

A

A

B

B

SPLIT-SHAFT PTO BALL SWITCH N.O.

W15

J - 1
PTO Space Claims

Transmission Mounted - Engine Driven PTO

Notes:
1. Standard SAE 6-bolt mounting flange
2. Eaton rating for this location is 250 Lb·ft torque
3. PTO shown for illustrative purpose only
4. See PTO manufacturer for speeds, ratings, and model availability
 (direct mount pump option shown)

Figure 57
Transmission Countershaft Driven PTO's

Notes:
1. Standard 6 & 8-bolt SAE mounting flanges
2. Eaton torque ratings: 500 Lb-ft torque @ 6 & 8-bolt openings
3. Minimum vehicle component clearance of 1" required with PTOs and transmission cases.
4. Heat shielding required if exhaust clearance is less than 2"
5. Transmission sump return tube must not be removed when mounting PTO at 8-bolt location.

Figure 58
PTO Manufacturer’s Information

Typical Power Take-Off Applications for Eaton® Fuller® CEEMAT™ Transmissions

New Eight-Bolt PTO Series 880

Special to the rotatable flange of your choice.

W3RA) is for the SAE “B” 2-bolt option and the “RB” (440XQAHX-W3RB) is for the SAE “B” 4-bolt option. The “RA” (440XQAHX-W3RA) is for the SAE “B” 2-bolt option and the “RB” (440XQAHX-W3RB) is for the SAE “B” 4-bolt option. The new option will benefit the installer by giving them the ability to rotate the pump to clear interference problems that have been typically caused by the following:

1. Frame rail interference.
2. Transmission interference.
3. Hose routing.

The new option can be ordered directly on the 440, 230, 231, 270, 271, and 276 series. The designator for this option is “RA” or “RB” placed in the output option.

For Application Assistance call 1-800-for-PTOs (367-7867)

New Additions and Changes to the 230, 231, 270, and 271 Series

<table>
<thead>
<tr>
<th>PTO Series</th>
<th>Speed Ratio</th>
<th>Torque Rating in Lb., ft. With Lube</th>
<th>Without Lube</th>
</tr>
</thead>
<tbody>
<tr>
<td>230/270</td>
<td>A</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>230/271</td>
<td>U</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>230/271</td>
<td>A</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>230/271</td>
<td>B</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>231/271</td>
<td>U</td>
<td>225</td>
<td>225</td>
</tr>
</tbody>
</table>

The 230 and 270 series will see an increase in torque capacity when used with pressure lubrication. The 231 and 271 will remain at 250 Lbf ft because of the long adaptor plate required to provide better clearance between the transmission and frame rails.

Available as a kit PTO.

For Application Assistance call (419) 866-3900

83
Typical Wire Harness

Figure 59
Power Lead Connections

Figure 61

Ignition Power (Switched Power) Run To Main Power Lead That Feeds The Ignition Bus.

Circuit Breaker (Automatic Resetting Type Required)
15 AMP For 12 Volt System
10 AMP For 24 Volt System

CAUTION
Power lead (W1) must be connected as shown for proper transmission operation.

NOTE: Circuit Breaker type 1 or 2 are acceptable.

CAUTION
Main vehicle battery cable (+) or (-) must be disconnected prior to any type of welding on vehicle.
NOTE: The CEEMAT ground circuits must be on separate ring terminals. Electrical power to the CEEMAT transmission is very important. Redundant power and ground is required to be supplied to the CEEMAT. Redundant power through circuits W2 pin-L (battery bus) and W1 pin-K (ignition bus). Redundant ground through circuits W14 pin-B and W13 pin-C. Do not connect the ground circuits to a signal ring terminal. Do not splice W14 pin-B and W13 pin-C together with one wire running to ground. This will create a signal point power failure. This is not acceptable. Total loss of electrical power will cause the CEEMAT to shift to neutral. The CEEMAT ground circuits W14 pin-B and W13 pin-C must be connected to separate ring terminals.
Ground & Battery Connections

Both ground wires (W13 & W14) must be connected to battery ground using separate ring terminals. The diagram above shows a typical truck ground circuit. The CEEMAT must not be grounded to the cylinder head ground stud because it can introduce noise transients affecting control system performance.

With an ohmmeter measure the resistance from pins B & C to the negative battery post. It should not be more than 0.3 ohms.

To insure proper functioning of the vehicle and transmission electrical systems, there must be a direct wire path from the CEEMAT ground pins B & C to the Battery negative post. Failure to do so reduces the effectiveness of the connection. Eaton does not recommend a connection from the engine ground stud to the main frame rail at a connection point different than where the "(-) Battery" connection is made. A two (2) point frame rail connection method depends on frame rail connections. Manufacturing process of frame rail connection is difficult to control. This multiple frame rail connection scheme is also more difficult to troubleshoot.
The CEEMAT transmission system requires isolated clean power for both the ignition and battery bus. The typical constant current draw for the CEEMAT at 12 volts is 5 amps (2.5 amps for 24 volts). The CEEMAT can draw up to 12 amps (6 amps for 24 volts) for a short period. The CEEMAT requires redundant power, both the ignition and battery bus must be able to carry the max current load. If the CEEMAT is equipped with Electronic Shifter, the CEEMAT ECU and the electronic shifter can share the same circuit breaker. Refer to the “Shift Control System (Electric)” section in this guide. Other vehicle electrical systems cannot be connected to the same circuit breaker as the CEEMAT.

CAUTION

This Vehicle Is Equipped With Electronic Controls The Following Precautions Must Be Taken When Welding:

- Disconnect The Wiring Harness Connectors At The Transmission Electronic Control Unit (ECU).
- Disconnect The Main Vehicle Battery Cable (+) And (-) And Any Electronic Ground Wires Connected To The Frame Or Chassis.
- Cover Electronic Control Components And Wiring To Protect From Hot Sparks, Etc.
- Do Not Connect Welding Cables To Electronic Control Components.
Brake Switch Connections

Figure 64

Install a second brake switch (must be normally open and actuate at 6 P.S.I. ± 2)

Transmission Connector

WIRE TABLE

<table>
<thead>
<tr>
<th>Wire Code</th>
<th>Wire Description</th>
<th>Pin Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6</td>
<td>SER BRK</td>
<td>E</td>
</tr>
<tr>
<td>W1C</td>
<td>SER BRK (+)</td>
<td>Splice with pin K</td>
</tr>
</tbody>
</table>

20022-4/92
Brake Switch Wiring Diagram

Figure 65

IGNITION POWER (SWITCHED POWER) RUN TO MAIN POWER LEAD THAT FEEDS THE IGNITION BUS

W1C W1 W6

CEMAT SERVICE BRAKE SWITCH NO DPS = 2

IGNITION POWER

RUN TO MAIN POWER LEAD THAT FEEDS THE IGNITION BUS

21005-6/93
Transmission Service Light Using Eaton Service Light

Figure 66

NOTE: Transmission service light must not exceed .35 amps. Transmission service light must be in plain view of driver.

NOTE: Transmission service light can be an OEM supplied part. Lens color red.

NOTE: If push button control is used, no transmission service light is needed. Service light is mounted in push button control.

<table>
<thead>
<tr>
<th>WIRE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Code</td>
</tr>
<tr>
<td>W16</td>
</tr>
<tr>
<td>W1B</td>
</tr>
</tbody>
</table>

Label part # 4300543

Service light
12 Volt Part # 5559100
24 Volt Part # 5559101
Transmission Service Light Wiring Diagram

Figure 67

TRANSMISSION SERVICE LIGHT

.35 AMP MAX LOCATE IN PLAIN VIEW OF DRIVER

IGNITION POWER (SWITCHED POWER) RUN TO MAIN POWER LEAD THAT FEEDS THE IGNITION BUS

WI

W1

W16

J-1

21006-6/93
Diagnostic Connections

Figure 68

<table>
<thead>
<tr>
<th>WIRE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Code</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>W3</td>
</tr>
<tr>
<td>W4</td>
</tr>
</tbody>
</table>

SAE has two (2) approved connectors, Eaton recommends the Deutsch 6-way

Deutsch 6-way P/N-HD10-6-12P
Pin P/N - 0460-220-1231
Protective Cap P/N HDC 16-6

AMP 8-way
P/N A-206433-4
Terminal P/N A-205201-5
Strain Relief P/N A-206062-1
Sealing Cap P/N A-208800-1
TRANSMISSION DIAGNOSTICS CONNECTOR MUST BE ACCESSIBLE. MOUNT ON LEFT SIZE OF DASH OR LEAVE UNDER DASH.
Auxiliary Inputs and Outputs

The CEEMAT has spare inputs and output connections that are located under the dash. These features are application specific. All wires that are not used must be insulated by the use of a closed end splice.

Figure 70

<table>
<thead>
<tr>
<th>WIRE TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wire Code</td>
</tr>
<tr>
<td>W7</td>
</tr>
<tr>
<td>W15</td>
</tr>
<tr>
<td>W8</td>
</tr>
<tr>
<td>W22</td>
</tr>
<tr>
<td>W11</td>
</tr>
</tbody>
</table>

"Analog In" is a spare input on ATE units only

WIRE TABLE

- **Trans_Neutral** output is not used to drive a start enable relay. The purpose of the neutral output is to signal vehicle systems, such as throttle boost, that the transmission is in neutral. This output will activate when the operator requests neutral (via the shift lever or **QUICK TO NEUTRAL**) and the transmission mode is neutral.
 - **Trans_Neutral output**: +12 volts @2 amp (+24 volts @1 amp)

- **Aux 1 Input**: Can be used for the following:
 - Split-Shaft PTO: Application specific software is required. Refer to the “Power Take-Off” section in this guide.
 - Quick-To-Neutral: Application specific software is required. Available only with electronic shift lever.
Auxiliary Inputs and Outputs Wiring Diagram

Figure 71

<table>
<thead>
<tr>
<th>ECU Pin</th>
<th>Wire Description</th>
<th>Function</th>
<th>Input/Output</th>
<th>Software Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>PTO</td>
<td>Countershaft PTO</td>
<td>Input +12 V/+24 V</td>
<td>No</td>
</tr>
<tr>
<td>F</td>
<td>Engine Brake Disable</td>
<td>Engine Brake</td>
<td>Output +12V @2A/ +24V @ 1A</td>
<td>No</td>
</tr>
<tr>
<td>R</td>
<td>Aux 1 Input</td>
<td>Quick-To-Neutral</td>
<td>Input +12 V/+24 V</td>
<td>Yes</td>
</tr>
<tr>
<td>R</td>
<td>Aux 1 Input</td>
<td>Pump Mode (Split Shaft PTO)</td>
<td>Input +12 V/+24 V</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>Aux 2 Input</td>
<td>Application Specific</td>
<td>Input +12 V/+24 V</td>
<td>Yes</td>
</tr>
<tr>
<td>T</td>
<td>Analog Input</td>
<td>Application Specific</td>
<td>Input 0-5 V</td>
<td>Yes</td>
</tr>
<tr>
<td>V</td>
<td>Trans Neutral</td>
<td>Trans Neutral Output</td>
<td>Output +12 V @2A/ +24V @ 1A</td>
<td>No</td>
</tr>
</tbody>
</table>
Transmission Neutral Output Feature

Transmission neutral output is not used to drive a start enable relay. The purpose of the neutral output is to signal vehicle systems, such as throttle boost, that the transmission is in neutral. This output will activate when the operator requests neutral (via the shift lever or quick to neutral) and the transmission mode is neutral.

Quick To Neutral Feature

An active QTN input signal here will command the CEEMAT to neutralize, (such as the application of the work brake). When QTN is requested while in a starting gear the CEEMAT will neutralize by disengaging only the interrupt clutch. When the CEEMAT is not in a starting gear, the transmission will shift to neutral and disengage the interrupt clutch. Selecting, then deselecting QTN while the shift lever is in drive will re-engage the starting gear. Deselecting QTN while in reverse will keep the transmission in neutral until the operator selects neutral, then reverse. (Electronic Shift Lever Only)
J-1922 Communication Link

Figure 74

Packard Connector
P/N 12010973
Pin P/N 12089305
Cable Seal P/N 12015193

Packard Connector
P/N 12015792
Socket P/N 12010182
Cable Seal P/N 12015193

WIRE TABLE

<table>
<thead>
<tr>
<th>Wire Code</th>
<th>Wire Description</th>
<th>Pin Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>W17</td>
<td>J-1922 (+)</td>
<td>A</td>
</tr>
<tr>
<td>W18</td>
<td>J-1922 (−)</td>
<td>P</td>
</tr>
</tbody>
</table>

W17 and W18 are a twisted pair

NOTE: If the J-1922 link is connected incorrectly to the engines ECM transmission will stay in starting gear.
Location of the J-1922 Control Data Link on Cummins Engines

Mating Connector
Packard 2-Way
P/N 12010973
Pins P/N 12089305
Cable Seal P/N 12015193
Location of the J-1922 Control Data Link on the Caterpillar 3176A Engine

Figure 76

J7 Mating Connector
Deutsch DRC 16-405A

Packard Connector
P/N 12015792
Socket P/N 12010182
Cable Seal P/N 12015193

Packard Connector
P/N 12010973
Pin P/N 12089305
Cable Seal P/N 12015193

20038-6/93
20039-6/93
21009-6/93
Location of the J-1922 Control Data Link on the Caterpillar 3406E and 3176B Engines

Figure 77

J1 Mating Connector
Deutsch P/N AEC16-405A

ECM Connector J1/P1

Electronic Control Module (ECM)

Personality Module Cover

20040-6/93
Location of J-1922 Control Data Link on Detroit Diesel DDECII

NOTE: J-1587 & J-1922 share the same twisted pair. J-1922 data link from the CEEMAT™ must connect as diagramed.

Electrical Requirements
For J-1922 Communications Link
Location of the J-1922 Control Data Link on Detroit Diesel DDECIII

Figure 79

Electronic Control Module (ECM)
Pressure Switch Location For Optional Engine Brake

Figure 80

CEEMAT TRANSMISSION ECU CONNECTOR J-1 TERMINAL F LOCATION.

ENGINE BRAKE DISABLE CIRCUIT IS FOR MECHANICALLY GOVERNED ENGINES ONLY.

PIN 85 BROWN
PIN 86 GREEN
PIN 87a GRAY
PIN 87 NOT USED

ADD DIODE FOR CIRCUIT PROTECTION

TO 10 AMP +12V FUSE OR CIRCUIT BREAKER ON IGNITION BUS

FUEL PUMP SWITCH

Bosch Relay: 0 332-209-159 (12 Volt)
0 332-209-211 (24 Volt)

Relay Mount: 3 334-485-008
Terminal (4): 1 901-355-917 (AMP 42238-2)

20047-7/95
Rotated Pan — Right Side View

Figure 81

NOTE: Shown with side slot kit (mounted in 6-bolt PTO location)

20055-7/93

NOTE: Model ATE — PTO only available at thru-shaft location and engine driven.

Model AT — PTO only available at 8-bolt and engine driven location.

"AT" Rotated Pan — Rear View

Figure 82

20056-7/93
Left View

Figure 83

![Left View Image]

Rear View

Figure 84

![Rear View Image]
Installation Requirements

All CEEMAT™ transmissions installed at OEM Facilities must meet the application requirements specified in Transmission Application Approval Form FUL-219.

Line Inspection

1. Each CEEMAT installed at the OEM must pass the on-line checklist requirements per Eaton CEEMAT™ Line Inspection Form, Appendix I, prior to shipment from the OEM plant.

Flywheel Installation

1. The flywheel and drive ring must be an Eaton approved design and must be installed per the appropriate Eaton or Engine OEM specifications.

2. **Pilot Adapter:** When using the bolt-on drive ring adapter, a center pilot adapter must also be used. Care should be used to insure the adapter is completely seated into the flywheel, see figure 2 for dimensional information.

Flywheel Housing Sealing Requirements

1. The engine flywheel housing must be approved for “wet” applications, including a double lip rear engine crankshaft seal. The housing must provide a completely sealed environment for the torque converter area.

2. The vehicle OEM is responsible for sealing all holes in the flywheel housing/converter housing area including starter, mounting pads, transmission mounting, speed pickups, etc.

3. Gasket, seal ring, or equivalent sealing method along with sealed fasteners must be used when mounting the starter to the flywheel housing.

Transmission Mounting

1. The CEEMAT comes equipped with special sealed washers at the ECU cover mounting capscrew locations (see illustration), these capscrews must not be removed or replaced. Standoff brackets or hose clamps can not be used at any of the ECU capscrew locations.

Transmission Support Requirements

1. A rear transmission support is required for all installations where the transmission nodal mount supports are not used.

2. The CEEMAT comes equipped with special sealed washers at the ECU cover mounting capscrew locations. These capscrews must not be removed or replaced. Standoff brackets or hose clamps can not be used at any of the ECU capscrew locations.

Throttle Sensor Mounting

1. The sensor body must be mounted to a solid flat frame member; not on the engine or power package.

Fuel Interrupt Mounting

1. If required, the engine defuel system must be Eaton or Engine OEM approved.

2. Electro-Pneumatic control must be installed per specifications in this manual.

3. Electro-Hydraulic control must be installed per engine OEM specifications and this manual.
4. Air Throttle control must be installed per Williams Control, Inc. specifications and this manual.

5. Pedal supply air must be non-regulated (full system pressure).

6. Minimum throttle control air line size when used with CEEMAT defuel system is 1/4" I.D. Air line must be installed with no sharp bends or tie wraps that restrict air flow.

7. The throttle control air line length, when used with CEEMAT defuel, should be as short as possible with a maximum length of 30'.

8. OEM throttle return springs must be mounted securely to the engine fuel pump throttle arm, not on the throttle control or linkage.

9. When using the air throttle defuel system shown in Figures 11 and 15, the integral throttle position sensor system must also be used to insure proper shift quality. Reference page 25.

Cooler Requirements

1. An external transmission cooler must be used with the CEEMAT™ transmission. The cooler sizing must meet application approval requirements specified in FUL-219.

2. A minimum pressure drop through the transmission of 10 PSI @ 1800 RPM is required (converter lube apply pressure - converter lube outlet pressure) see reference "Cooler Requirements" section.

3. The cooler return line must be routed into the Eaton supplied back-pressure valve (Eaton P/N A-5754). This valve can be located on either side of the CEEMAT.

4. The oil cooler and cooler connecting lines should be free of debris, dirt, grease, etc. before being attached to the transmission. If these conditions exist, cooler and lines must be flushed or cleaned.

5. A temperature gauge with a maximum range of 325°F and an over temperature alarm set at 300°F is required. Sensors for the gauge and alarm must be located in the torque converter outlet stream before the cooler.

Dipstick and Dipstick Tube Information

1. New dipstick and tube designs are required to be approved and/or validated by Eaton engineering if supplied by the OEM.

2. A supporting bracket to eliminate vibration is required at the upper end of the dipstick tube. The bracket must be attached to the transmission or engine and not the frame or body. See figure 29.

3. A minimum overall vertical rise of 14" must be maintained above the converter housing oil pan mounting surface for oil filling.

4. The first section of the dipstick tube must be vertical from the oil pan connector to a minimum of 2.5" above the converter housing oil pan mounting surface to insure accurate level readings.

5. Actual oil level must be within Eaton specifications according to the dipstick readings.

Lubrication Requirements

1. Oil must meet MIL-L-2104E specifications or Dexron® II. Oil must be filled to the proper oil level prior to OEM shipment.
Air Supply/Dryer Requirements
1. A high quality commercially available air dryer is required in the air supply line before the CEEMAT transmission.
2. Minimum air requirement for the CEEMAT Transmission is 90 PSI.
3. A minimum 3/8 inch diameter air supply line is required for the transmission.
4. The CEEMAT air supply is required to be routed from the air tank which supplies air to either the front or rear vehicle service brakes with a gauge indicator in the cab. See figure 30.

Shift Control System (Cable)
1. Maximum installed system (cable and control combined) backlash must not exceed ±.175 from center.
2. 5/16” diameter (60 Series) cable must be used of cable length > 96”. ¼” diameter cable can be used if cable length ≤ 96”.

Power Take-Off
1. All split-shaft power take-off’s for pump/vacuum applications with CEEMAT must provide electrical interface (electrical signal) to the transmission.
2. The transmission must be specifically ordered for Split Shaft PTO application to allow the direct ratio function while in pumper/vacuum mode. The CEEMAT must be configured with the proper electronic software prior to shipment from Eaton.
3. A specific pressure switch or ball switch must be used on the PTO to supply the transmission with an electrical signal when in pump/vacuum mode (see electrical interface requirements this section).

General Electrical System Requirements
1. The CEEMAT transmission system requires isolated clean power for both the ignition and battery bus. The typical constant current draw for the CEEMAT at 12 volts is 5 amps (2.5 amps for 24 volts). The CEEMAT can draw up to 12 amps (6 amps for 24 volts) for a short period. The CEEMAT requires redundant power, both the ignition and battery bus must be able to carry the max current load. If the CEEMAT is equipped with Electronic Shifter, the CEEMAT ECU and the electronic shifter can share the same circuit breaker. Refer to the “Shift Control System (Electric)” section in this guide. Other vehicle electrical systems can not be connected to the same circuit breaker as the CEEMAT.
2. The CEEMAT ground circuits must be on separate ring terminals. Electrical power to the CEEMAT transmission is very important. Redundant power and ground is required to be supplied to the CEEMAT. Redundant power through circuits W2 pin-L (battery bus) and W1 pin-K (ignition bus). Redundant ground through circuits W14 pin-B and W13 pin-C. Do not connect the ground circuits to a signal ring terminal. Do not splice W14 pin-B and W13 pin-C together with one wire running to ground. This will create a single point power failure. This is not acceptable. Total loss of electrical power will cause the CEEMAT to shift to neutral. The CEEMAT ground circuits W14 pin-B and W13 pin-C must be connected to separate ring terminals.
3. All wires to transmission must be 14 gage (SXL). All wires to shift lever must be 16 gage (SXL).
4. Isolated, clean power. 15 Amp resetting circuit breakers required for 12 volt systems, 10 Amp for 24 volt system.

5. CEEMAT™ grounds must be in separate ring terminals and bolted to the vehicle frame rail where the battery or starter is grounded.

6. Independent service brake pressure switch required to interface with the transmission. 6 PSI, (± 2 PSI) normally open switch.

7. Transmission service light must be mounted in the dash board in plain view of the driver, lamp must not exceed .35 AMPS. Service light must be labeled “SERVICE TRANSMISSION”.

8. SAE-1708 diagnostic connector must be located in an easily accessible place inside the cab.

10. All unused wires must be insulated by the use of a closed end splice.

11. If optional engine brake is used, voltage flyback diodes must be installed across engine brake solenoid valves.

12. If optional engine brake is used with a mechanically governed engine, a normally open pressure switch with a set point of 115 PSI must be used.

13. Wiring must meet requirements as stated in this guide.

14. Main vehicle battery cable (+) or (-) must be disconnected prior to any type of welding on vehicle.

15. DDEC II and CAT 3176A must be specified with J-1922 active.
Installation Quick Reference

Engine Section

A. Double Lip Engine Rear Crankshaft Seal Required
 Source approved seal per the engine OEM recommendations.

B. Engine Flywheel Housing Sealing Required
 Engine flywheel runout to conform to engine OEM specs.
 Ordered per appropriate engine OEM option number.
 • Sealing at: Flywheel housing mounting face, threaded fasteners, covers, sensors, engine support mounts and transmission SAE O-Ring pilot.

C. Sealed Engine Starter Required
 Ordered per appropriate engine OEM option number.
 • Sealing at: Mounting face, starter motor, threaded fasteners.

D. Flywheel and Torque Converter Pilot

 NOTE: Spline drive feature with no direct coupling! Ordered per appropriate engine OEM option number or Eaton number.
 • See appropriate Eaton installation drawing for flywheel threaded fastener installation.
 • See appropriate Eaton engine installation drawing for integral or separate converter pilot.

E. Transmission O-Ring and Sealed Threaded Mounting Fasteners Required
 Use only 3 point lifting chain for transmission. O-Ring supplied with transmission per SAE sealed flywheel housing size.
 • Sealing at: Threaded mounting fasteners (when through tapped holes encountered at the flywheel housing).

F. Transmission Mounting - Nodal & Rear Supports
 • Sealed threaded fasteners required at the transmission nodal pads identified with tags.
 • Rear support required when nodal mounts not used. Support to conform to SAE SP - 479 specification.

G. Engine Fuel Control Required (Mech. governed engines only)
 Ordered per appropriate engine OEM option number or Eaton number.
 • Electro-Pneumatic control installed per Eaton drawing 71054. Electro-Hydraulic Valve installed per engine OEM requirements.

H. Transmission Dipstick and Tube Required
 Stick & Tube set must comply with Eaton drawing requirements.
 • Oil per MIL-L-2104E SAE 10 Wt. or Dexron® II
 • Oil fill - Must be checked in neutral engine at idle.

Chassis Section

I. Throttle Position Sensor Required (Mech. governed engines only)
 Installed per Eaton drawing 5556005.
 • Harness terminals W10, W12, W13.
 • Mounted on body or chassis, not engine package
J. Transmission Cooler, Circuit, and Sensors Required

- Cooler sized per application approval.
- Sensors installed per Eaton approval.
- Gauge per Eaton approval. Maximum reading of 325°F required.

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>to 250°F</td>
<td>Green band</td>
</tr>
<tr>
<td>250°F - 300°F</td>
<td>Yellow band</td>
</tr>
<tr>
<td>above 300°F</td>
<td>Red band</td>
</tr>
</tbody>
</table>

- Warning device per Eaton approval actuated at 300°F.
- Circuit pressure drop per Eaton approval (5/8 inch line minimum).

K. Shift Control Required

- Control assembly to conform to Eaton Installation Guide, TRIG-0020.
- Cable control system to conform to Eaton Installation Guide, TRIG-0020.
- Installation must meet criteria per Eaton Installation Guide, TRIG-0020.

L. Transmission Air Supply Circuit Requirements

An air dryer is required in the vehicle pneumatic system. The supply must originate from the dry side primary circuit.
- 3/8 inch line minimum, 90 PSI minimum

M. Exhaust

Exhaust pipe must be at least 1” away from transmission.

Electrical Section

N. Electrical Dual Power Required

Other vehicle electrical systems can not be connected to the same circuit breaker as the CEEMAT.
12 V power from 15 amp auto-rest circuit breaker - ignition
 Ignition connection to harness terminal W1
12 V power from 15 amp auto-rest circuit breaker - battery
 Battery connection to harness terminal W2
24 V power from 10 amp auto-rest circuit breaker - ignition
 Ignition connection to harness terminal W1
24 V power from 10 amp auto-rest circuit breaker - battery
 Battery connection to harness terminal W2

O. Electrical Grounds Required

Dual independent terminals W13 & W14 at battery ground to frame. Max. resistance from pins B & C to negative battery post .3 ohms.

P. “Service Transmission” Light & Diagnostic Connector Required

Service light .35 amps maximum per Eaton approval. Diagnostic SAEJ-1708 connector with easy in cab access.
- Terminated at harness W13a, W4, W3, & W2a.

Q. J-1922 Interface Required w/Electronic Governed Engines

Cab Section

R. CEEMAT Vehicle Service Brake Sensor Required

Independent service brake switch terminated at harness W6.
- 4 PSI - Normally open

S. Neutral Start & Reverse Back Up Switches

- Switches incorporated into the shift control lever assy.
Torque Specifications

a. Flywheel Adaptor Ring bolts:
 - Inch design (7/16-14) - 37-50 Lbf·ft
 - Metric design (M10-35) - 50-55 Lbf·ft

b. Flywheel bolts (with integrated drive ring):
 - Follow engine manufacturers specifications

c. Transmission-to-engine bolts:
 - * * Inch design (7/16-14) - 37-50 Lbf·ft
 - * * Inch design (3/8-16) - 25-32 Lbf·ft
 - * * Metric design (M10-35) - 26-35 Lbf·ft

d. Transmission nodal mount bolts: (3/4-10 UNC) - 180-190 Lbf·ft
 - (Nonpermanent thread sealant at through hole locations required. Use Loctite #567 pipe sealant or equivalent.)

e. Output yoke nut - 450-500 Lbf·ft

f. PTO mounting bolts:
 - 6-bolt opening - 20-25 Lbf·ft
 - 8-bolt opening - 50-65 Lbf·ft

g. Torque converter outlet fitting (1 5/8-12) - 60-70 Lbf·ft

h. Oil cooler line fittings (1 1/16-12) - 50-60 Lbf·ft

i. Oil cooler line nut (1 1/16-12 JIC 37°) - 45-55 Lbf·ft

j. Dipstick tube fitting (1 5/8-12) - 60-70 Lbf·ft

k. Dipstick tube nut (1 5/16-12 JIC 37°) - 50-60 Lbf·ft

l. Speedometer body in rear cover - 35-50 Lbf·ft

m. Speedometer drive cable nut - 50 Lbf·in

n. Speedometer electronic sensor (3/4-16) - 10-15 Lbf·ft

o. Oil drain plugs:
 - Converter pan (1/2-20 std. thd. with washer) - 15-20 Lbf·ft
 - Converter pan (3/8 NPT) - 20-25 Lbf·ft
 - Main case (3/4 NPT) - 45-55 Lbf·ft

p. Oil temperature sensor (1/2-14 NPTF) - 16-20 Lbf·ft

q. Lifting bracket bolts (3/8-16) - 25-32 Lbf·ft

r. Throttle position sensor mounting bolts (1/4-20) - 7-10 Lbf·ft

s. Shift cable u-bolt nuts (1/4-20) - 8-14 Lbf·ft

t. Shift cable swivel nut (5/16-24) - 8-14 Lbf·ft

u. Rear support nuts (5/8-18) - 170-185 Lbf·ft

v. Hydraulic Valve mounting bolts (3/8 - 16 grade 5) - 35-45 Lbf·ft
 - * * THREAD ADHESIVE/SEALANT REQUIRED
Publications and Drawings

Publications
- TRTS-0020 CEEMAT Troubleshooting Guide
- TRDR-0020 CEEMAT Drivers Instructions
- TRSM-0020 CEEMAT Service Manual
- TRIP-0023 Illustrated Parts List - 11109
- TRIP-0025 Illustrated Parts List - 13109
- TRIP-0022 Illustrated Parts List - 14109
- TRIP-0026 Illustrated Parts List - 16109
- Item #0838 Ordering And Shipping Information for Diagnostic Tools
- TCFM-0018 Product Literature Order Form
- TRIG-0020 CEEMAT OEM Installation Guide
- OSP-100 Product Literature - Eaton® Fuller® CEEMAT™

Drawing Numbers
- AT-AD RTO 11/13/14109A-AT
- AT-AD RTO 11/13/14109B-AT
- ATE-AD RTO 11/13/14109A-ATE
- ATE-AD RTO 11/13/14109B-ATE
- 5504000 Shift Control Chart drawing
- 5503500 Shift Cable drawing
- 71052 Installation drawing. Shift Control
- 5500503 Dipstick Tube Detail-SAE #1 Applications
- 5501004 Dipstick Detail - Std on SAE #1 Applications

Miscellaneous Drawings
- 4300315 90 Degree Torque Converter Outlet Fitting
- 4302573 45 Degree Torque Converter Outlet Fitting
- 4300809 Straight Torque Converter Outlet Fitting
- 5556035 Pneumatic Defuel Kit
- 53400 Electro/Hydraulic Defuel Valve
- 5561000 Linear Throttle Position Sensor
- 5556005 Installation Instructions for Linear TPS
- 5556020 CEEMAT Yoke Options
- 5556031 Low Profile Oil Pan Installation
- 5556015 Rotated Oil Pan Installation
- 5504200 Electronic Shift Lever Options
- 5504300 ESL Tower Assembly Options
Line Inspection Form
<table>
<thead>
<tr>
<th>Pre-Start Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify power down after 15 seconds.</td>
</tr>
<tr>
<td>If not, then check power @ Main transmission harness with voltmeter</td>
</tr>
<tr>
<td>A. PIN K and PIN B (power with key on only) within .6V batt.</td>
</tr>
<tr>
<td>B. PIN L and PIN C (battery power) within .6V batt.</td>
</tr>
<tr>
<td>2. CEEMAT Circuit Breakers -</td>
</tr>
<tr>
<td>Battery Power = 30 AMP Inline Fuse</td>
</tr>
<tr>
<td>Ignition Power = 15 AMP/12 Volt - 10 AMP/24 Volt system (auto reset type)</td>
</tr>
<tr>
<td>3. Air Supply-</td>
</tr>
<tr>
<td>Plumbbed Direct From Front or Rear Service Brake Tank</td>
</tr>
<tr>
<td>4. Oil Fill - 7 Gals. (27 Liters) minimum before starting</td>
</tr>
<tr>
<td>5. Hand-held Diagnostic Tool Checks -</td>
</tr>
<tr>
<td>A. Shift Lever Test</td>
</tr>
<tr>
<td>B. Air System Test</td>
</tr>
<tr>
<td>C. Vehicle Interface Test</td>
</tr>
<tr>
<td>6. Verify Service Light Operation</td>
</tr>
<tr>
<td>Post-Start Checks</td>
</tr>
<tr>
<td>7. Oil Fill - complete oil fill at neutral idle</td>
</tr>
<tr>
<td>8. Hand-held Diagnostic Tool Checks -</td>
</tr>
<tr>
<td>A. Throttle Dip Test "AT" Only</td>
</tr>
<tr>
<td>DYNO/Road Test Checks</td>
</tr>
<tr>
<td>9. Verify engine does not start with transmission in gear</td>
</tr>
<tr>
<td>10. Verify all drive positions and top gear can be obtained</td>
</tr>
<tr>
<td>11. Verify transmission temperature gauge functional</td>
</tr>
<tr>
<td>12. Recheck and verify transmission oil level is correct</td>
</tr>
<tr>
<td>13. Verify no transmission oil leaks</td>
</tr>
<tr>
<td>14. Verify CEEMAT shift label and drivers book in cab</td>
</tr>
<tr>
<td>15. Verify no transmission FAULT CODES</td>
</tr>
<tr>
<td>Optional Features (If Equipped and Provided)</td>
</tr>
<tr>
<td>16. Verify neutral output NA</td>
</tr>
<tr>
<td>17. Verify auto neutral NA</td>
</tr>
<tr>
<td>18. Verify quick to neutral (QTN) Or Verify Pump Mode NA</td>
</tr>
<tr>
<td>19. Verify engine brake works correctly (if equipped)—"AT" Only NA</td>
</tr>
<tr>
<td>Comments</td>
</tr>
</tbody>
</table>

Final Inspection Date Please send copy to: Eaton Corp. FAX # (616) 342-3487
Signature P.O. Box 4013, Kalamazoo, MI 49003 Attn: Autom. Prod. Dept. 12
Line Inspection Form
CEEMAT™
Line Inspection

<table>
<thead>
<tr>
<th>Description</th>
<th>Yes</th>
<th>No</th>
<th>Corrected</th>
</tr>
</thead>
</table>

Pre-Start Checks

1. Verify power down after 15 seconds.
 - If not, then check power @ Main transmission harness with voltmeter
 - A. PIN K and PIN B (power with key on only) within .6V batt.
 - B. PIN L and PIN C (battery power) within .6V batt.

2. **CEEMAT Circuit Breakers** -
 - Battery Power = 30 AMP Inline Fuse
 - Ignition Power = 15 AMP/12 Volt - 10 AMP/24 Volt system (auto reset type)

3. Air Supply -
 - Plumbed Direct From Front or Rear Service Brake Tank

4. Oil Fill - 7 Gals. (27 Liters) minimum before starting

5. Hand-held Diagnostic Tool Checks -
 - A. Shift Lever Test
 - B. Air System Test
 - C. Vehicle Interface Test

6. Verify Service Light Operation

Post-Start Checks

7. Oil Fill - complete oil fill at neutral idle

8. Hand-held Diagnostic Tool Checks -
 - A. Throttle Dip Test "AT" Only

DYNO/Road Test Checks

9. Verify engine does not start with transmission in gear

10. Verify all drive positions and top gear can be obtained

11. Verify transmission temperature gauge functional

12. Recheck and verify transmission oil level is correct

13. Verify no transmission oil leaks

14. Verify **CEEMAT** shift label and drivers book in cab

15. Verify no transmission FAULT CODES

Optional Features (If Equipped and Provided)

16. Verify neutral output NA

17. Verify auto neutral NA

18. Verify quick to neutral (QTN) Or Verify Pump Mode NA

19. Verify engine brake works correctly (if equipped) — "AT" Only NA

Comments

Final Inspection Date Please send copy to: Eaton Corp. FAX # (616) 342-3487

Signature P.O. Box 4013, Kalamazoo, MI 49003 Attn: Autom. Prod. Dept. 12
Vendor List

Genair Strain Reliefs
1211 Airway
Glendale, CA 91201-2497
(818) 247-6000

Grote & Hartman
(Terminals)
32036 Edward
Madison Heights, MI 48021
(313) 588-1022

IMO
Morse Controls Division
(Shift Controls and Cables)
21 Clinton St.
Hudson, OH 44236
(216) 653-7739

Kysor of Cadillac
(Temperature Switches)
1100 Wright Street
Cadillac, MI 49601
(616) 779-7500

Muncie Power Products
(Power Take-Offs)
342 N. Pershing Dr.
Muncie, IN 47305
(317) 284-7721

Pacific Insight Electronics Corp.
(Temperature Module)
624 Lakeside Dr.
Nelson, B.C. V1L 5S7
(604) 354-1155

Packard Electric
(Connectors)
Pioneer-Standard Electronics, Inc.
Packard Branch
5440 Naiman Parkway
Solon, OH 44139
1-800-PACKARD

Quadrastat Corporation
Quadco Electohydraulics Division
(Shift Controls and Cables)
1701 Pearl St-Unit 7
Waukesha, WI 53186
(414) 544-4204

Raychem
(Heat Shrink Boot)
Deanco Inc.
Meag Division
25W 624 St. Charles Road
Wheaton, IL 60188
(708) 665-6214

Robert Bosch Corporation
2800 South 25th Avenue
Broadview, IL 60153
(708) 865-5301

SPX Corporation
Kent-Moore Division
(Diagnostic Tool)
29784 Little Mack
Roseville, MI 48066-2298
1-800-328-6657

Stewart-Warner Hobbs Corporation
(Pressure Switch)
Yale Boulevard and Ash Street
Springfield, IL 62705
(217) 753-7791

Stewart Warner Instrument Corporation
(Temperature Gauge)
580 Slawin Court
Mount Prospect, IL 60056-2183
(708) 803-0200

Unlimited Services
(Caps & Buss Bars)
170 Evergreen Road
Oconto, WI 54153
(414) 834-4418

Williams Controls, Inc.
(Air Throttle)
14100 SW 72nd Avenue
Portland, OR 97224
(503) 684-8608
Troubleshooting

Check for proper air pressure

Check for proper oil level

Check transmission power circuit (fuses, circuit breakers)

NO

YES

For low air: Verify CEMAT's air system, see page 49.
For low oil level, see page 46.
For power: Reset/replace fuses, circuit breakers and verify the ground circuit, see pages 57 & 86-89.

Is the transmission performing properly?

NO

YES

Do any of the following conditions exist?

Resume operation.

NO

YES

Call for OEM service help.

Transmission does not engage a gear.

Transmission does not upshift from starting gear

ATE

AT

Verify shift control system is operating correctly, see pages 51-70. Verify by performing the Shift Lever Test on the hand held diagnostic tool.

Verify fuel interrupt is installed correctly, see pages 27-29. Verify by performing the Throttle Dip Test on the hand held diagnostic tool.

Verify J-1922 link is connected correctly. Verify the engine has it's J-1922 link active, see pages 64, 65 & 99-104. Verify by performing the Throttle Position Test on the hand held diagnostic tool.

Is transmission performing properly?

NO

YES

Call for OEM service help.

Resume operation.

Select Throttle Dip Test from the hand held tester.
Locate engine communication connector in the vehicle harness. Disconnect the transmission from the engine and place a voltmeter positive lead on pin A and negative lead on pin B. Measure the voltage between the pins of the transmission connector. The voltage should equal: +3.0-4.0 volts. Press Key 1 on the hand held tester to toggle the communication link voltage. The voltage should toggle from: +3.0-4.0 volts to -3.0-4.0 volts.

Does transmission check out Okay?

NO

YES

Call for OEM service help.
Resume operation, problem is not with transmission.
Electronic Shift Lever
Protective Boot Accessory

EATON P/N 4303275
USED W/ FELSTED MOUNTING
FLANGE P/N 59092

EATON P/N 4303333
USED W/ MORSE MOUNTING
FLANGE P/N 46595

EATON P/N 4303276
USED W/ SIDE MOUNT
INSTALLATIONS

20074-7/95

20023-8/95
Wiring Harness

1. J2 is only used for electronically governed engines. J2 connects to the engine ECM.
2. J4 & J5 are used only for mechanically governed engines. J4 connects to the throttle position sensor and J5 connects to the defuel control.
3. J9 is the 1587 diagnostic connector located on the dash.
4. J7 & J8 are ground ring terminals.
5. Dimension "J" is the locations the harness enters the cab.

<table>
<thead>
<tr>
<th>CONNECTOR/TERMINATION DESCRIPTION</th>
<th>FROM</th>
<th>TO</th>
<th>WIRE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-A J2-A 1922 (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-B J7 GND 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-C J8 GND 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-D J3-B P.T.O.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-E W6 SERV GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-F W7 AUX OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-G W16 SERV LIGHT GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-H J5-A DE-FUEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-J J4-C TPS (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-K W1 IGN BUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-L J10-B BAT BUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-M W3 ATA (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-N W4 ATA (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-P J2-B 1922 (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-R W15 SPARE IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-S J11-B PRESS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-T J4-B ANALOG IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-U J4-A TPS (-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J1-V J6 NULL OUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9-A SPICE W WI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9-B SPICE W J7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9-C SPICE W W1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9-D SPICE W W1 SERV LIGHT (+)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications for Wiring Harness

Harnesses can be supplied to meet the dimensional requirements for an installation. You specify the dimensions and a wiring harness will be made for your vehicle.

Step 1
Dimension units: Meter Feet (circle one)
NOTE: All dimensions should be rounded off to the nearest 0.1 meter (3 inches).

Step 2
Mechanically governed engine, skip Step 5. Engine Model: _______________________________
Electronically governed engine, skip Step 4. Engine Model: _______________________________

Step 3
Size of ring terminals J7, J8 & J9: \(\frac{1}{2} \)" \(\frac{3}{8} \)" (circle one, \(\frac{1}{2} \)" for starter, \(\frac{3}{8} \)" for battery)

Step 4
DIM "C" __________
DIM "D" __________
DIM "E" __________
DIM "F" __________
DIM "G" __________
DIM "H" __________

Step 5
DIM "A" __________
DIM "B" __________
DIM "G" __________
DIM "H" __________

NOTE: The harness enters the cab through the firewall at dimension “G”. If the harness enters the firewall through a grommet, supply dimension “H” and skip Step 6. If the harness enters the firewall through a connector, omit dimension “H” and supply the information in Step 6.

Step 6
Connector(s) manufacturer and part number:

<table>
<thead>
<tr>
<th>From Connector Location</th>
<th>To Connector Location</th>
<th>Wire Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-F</td>
<td>Aux out*</td>
<td></td>
</tr>
<tr>
<td>J1-G</td>
<td>Serv Light Gnd</td>
<td></td>
</tr>
<tr>
<td>J1-K</td>
<td>Ign bus</td>
<td></td>
</tr>
<tr>
<td>J1-M</td>
<td>ATA (-)</td>
<td></td>
</tr>
<tr>
<td>J1-N</td>
<td>ATA (+)</td>
<td></td>
</tr>
<tr>
<td>J1-R</td>
<td>Spare in*</td>
<td></td>
</tr>
<tr>
<td>J1-S</td>
<td>Aux in*</td>
<td></td>
</tr>
<tr>
<td>J1-V</td>
<td>NEUT OUT</td>
<td></td>
</tr>
<tr>
<td>Splice with W2</td>
<td>Diag (+)</td>
<td></td>
</tr>
<tr>
<td>Splice with J8</td>
<td>Diag (-)</td>
<td></td>
</tr>
<tr>
<td>Splice with W1</td>
<td>Serv Light (+)</td>
<td></td>
</tr>
<tr>
<td>Splice with W1</td>
<td>Serv Brake (+)</td>
<td></td>
</tr>
</tbody>
</table>

* If required
Electronic Shifter — Single Station

Typical Wiring Harness

<table>
<thead>
<tr>
<th>FROM CONNECTOR LOCATION</th>
<th>TO CONNECTOR LOCATION</th>
<th>WIRE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4-A12</td>
<td>J4-A11</td>
<td></td>
</tr>
<tr>
<td>J4-A10</td>
<td>J13-A</td>
<td>J1922 (+)</td>
</tr>
<tr>
<td>J4-A9</td>
<td>J13-B</td>
<td>J1922 (-)</td>
</tr>
<tr>
<td>J4-A8</td>
<td>J4-A1</td>
<td></td>
</tr>
<tr>
<td>J4-A7</td>
<td>W2</td>
<td></td>
</tr>
<tr>
<td>J4-A6</td>
<td>W2</td>
<td></td>
</tr>
<tr>
<td>J4-A5</td>
<td>W6</td>
<td>AUX OUT2</td>
</tr>
<tr>
<td>J4-A4</td>
<td>W29</td>
<td>AUX OUT2</td>
</tr>
<tr>
<td>J4-A3</td>
<td>W27</td>
<td>AUX OUT2</td>
</tr>
<tr>
<td>J4-A2</td>
<td>J11-5</td>
<td>NS LATCH</td>
</tr>
<tr>
<td>J4-A1</td>
<td>J11-1</td>
<td></td>
</tr>
<tr>
<td>J4-B12</td>
<td>W94</td>
<td>LAMP_GND</td>
</tr>
<tr>
<td>J4-B11</td>
<td>W95</td>
<td>AUX IN</td>
</tr>
<tr>
<td>J4-B10</td>
<td>W95</td>
<td>AUX IN</td>
</tr>
<tr>
<td>J4-B9</td>
<td>J4-B9</td>
<td>ESL_ENABLE</td>
</tr>
<tr>
<td>J4-B8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4-B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4-B6</td>
<td>J12-1</td>
<td>REV, SPLY</td>
</tr>
<tr>
<td>J4-B5</td>
<td>J12-2</td>
<td>REV, SPLY</td>
</tr>
<tr>
<td>J4-B4</td>
<td>J13-E</td>
<td>WASH</td>
</tr>
<tr>
<td>J4-B3</td>
<td>J13-2</td>
<td>AUX, GND</td>
</tr>
<tr>
<td>J4-B2</td>
<td>W3</td>
<td>GND</td>
</tr>
<tr>
<td>J13-A</td>
<td>SPICE TO J1-5</td>
<td>NS LATCH</td>
</tr>
<tr>
<td>J13-B</td>
<td>J13-3</td>
<td></td>
</tr>
<tr>
<td>J13-C</td>
<td>J13-5</td>
<td>REV, BAT</td>
</tr>
<tr>
<td>J13-D</td>
<td>J13-3</td>
<td>BACK, UP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TWISTED PAIRS</th>
<th>J1922 (+)</th>
<th>J1922 (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFTER</td>
<td>J1922 (+)</td>
<td>J1922 (-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONNECTOR TERMINATION DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>J4</td>
</tr>
<tr>
<td>(1) CONNECTOR BODY: 12110068 (LEVER)</td>
</tr>
<tr>
<td>(1) SECONDARY LOCK: 12047900</td>
</tr>
<tr>
<td>(1) SECONDARY LOCK: 12047901</td>
</tr>
<tr>
<td>(16) TERMINAL: 12069549</td>
</tr>
<tr>
<td>J10</td>
</tr>
<tr>
<td>(1) CONNECTOR BODY: 12015792</td>
</tr>
<tr>
<td>(1) CONNECTOR SEAL: 12010155</td>
</tr>
<tr>
<td>(2) SOCKET: 12010152</td>
</tr>
<tr>
<td>(2) CABLE SEAL: 12015323</td>
</tr>
<tr>
<td>J11</td>
</tr>
<tr>
<td>(1) CONNECTOR BODY: 3334 495 046 (BOSCH)</td>
</tr>
<tr>
<td>(2) TERMINAL: 26313.213.011 (GROTE & HARTMAN) FOR PIN 1 AND 2</td>
</tr>
<tr>
<td>(2) TERMINAL: 4224-2 (AMP)</td>
</tr>
<tr>
<td>FOR PIN 3 AND 4</td>
</tr>
<tr>
<td>J12</td>
</tr>
<tr>
<td>SAME AS J11</td>
</tr>
<tr>
<td>J13</td>
</tr>
<tr>
<td>(1) CONNECTOR BODY: 12034277</td>
</tr>
<tr>
<td>(1) CONNECTOR SEAL: 12034276</td>
</tr>
<tr>
<td>(5) SOCKET: 12010182</td>
</tr>
<tr>
<td>(5) CABLE SEAL: 12015323</td>
</tr>
</tbody>
</table>
Wire Harness

Harnesses CAN be supplied to meet the dimensional requirements of each installation. You must specify the dimensions from which a wiring harness can be fabricated for your vehicle.

STEP 1
Dimension units: _______ Meters: _______ Feet:

NOTE: All dimensions should be rounded off to the nearest 0.1 meter (3 inches).

STEP 2
Single Station (Omit Dim "A" and "F")

Dual Station

STEP 3
DIM “A” _______
DIM “B” _______
DIM “C” _______
DIM “D” _______
DIM “E” _______
DIM “F” _______

NOTE: Dimension “C” is the location the harness exits the cab through the firewall.

Dimension “A” and “F” are for Dual Station only.
Fuel Control Functional Test
(For Mechanically Governed Engines)

Normal engine acceleration and deceleration rates and the engine acceleration/ deceleration rates when controlled by the transmission should be the same. The transmission looks at information from its own internal speed sensors and must see the engine drop a minimum of 250 RPM/second before it will start to make a shift.

Symptoms of improper installation of the fuel control (throttle dip and throttle boost solenoids) may include: no shifting unless the driver lifts his foot from the accelerator pedal, an active fault code #35, (engine control failed), harsh, jerky, or slow shifting.

Generally, faster engine acceleration and deceleration rates will result in quicker and smoother shift quality from the CEEMAT transmission.

a. To determine if the engine deceleration and acceleration rates fall within acceptable ranges for the CEEMAT (the use of a stopwatch or other accurate means of measurement is recommended):

1. Manually increase the engine speed to governed rpm by depressing the throttle pedal. When a steady governed rpm is obtained, quickly remove foot from the throttle and measure the time it takes for the engine speed to decrease by 1000 rpm. If the engine speed does not drop 1000 RPM in less than 4 seconds (250 rpm/sec), contact engine OEM for possible fuel pump adjustment.

2. Starting at idle, fully depress the throttle pedal. Measure the time required for the engine to reach governed speed.

b. To determine if the CEEMAT fuel control system is functioning properly, connect the Eaton hand-held diagnostic tool (P/N 5505011) to the J1587 diagnostic port on the dash and select “Throttle Control Test” (or “Throttle Dip”) from the “Perform Tests” menu, and perform the following:

1. Increase engine speed to governed rpm by manually pushing on the throttle pedal. When a steady governed rpm is obtained, continue holding steady pressure on the throttle and press and hold the number “1” on the diagnostic tool to activate CEEMAT throttle dip. Measure the time it takes the engine speed to decrease 1000 RPM as in step a. Release the “1” key.

2. With no pressure on the throttle pedal (engine at idle) press and hold the number “1” on the diagnostic tool to activate CEEMAT throttle boost. Measure the time it takes for the engine to reach governed speed. Release the “1” key.
"AT" Model Without Power Synchronizer

PNEUMATIC THROTTLE PEDAL
(OEM SUPPLIED)

THROTTLE CONTROL
CYLINDER
(OEM SUPPLIED)

MATING CONNECTOR:
Packard Connector
P/N 12016792
Socket P/N 12010182
Cable Seal P/N 12015193

Kit S-2254 (12V) – S-2474 (24V)

1/8-27NPT EXHAUST PORT
"A" OR "1" IDENTIFICATION

1/8-27NPT AIR SUPPLY PORT
"B" OR "2" IDENTIFICATION

1/8-27NPT AIR INLET PORT
"C" OR "3" IDENTIFICATION

1/8-27NPT TO 1/8-27NPT REDUCER NIPPLE
(OEM SUPPLIED)

1/4-18NPT TO 1/8-27NPT
CABLE SEAL P/N 12015193

CONTROL
80 PSI MAX

EXHAUST

OEM Supplied

OEM Supplied

1/8-27NPT 1/8" ON ECU COVER

SUPPLY

80 PSI MAX

SIGNAL

SUPPLY

80 PSI MAX

ON ECU COVER

"E" OR "3" IDENTIFICATION

1/8-27NPT AIR INLET PORT
"A" OR "1" IDENTIFICATION

1/8-27NPT AIR SUPPLY PORT
"B" OR "2" IDENTIFICATION

1/8-27NPT TO 1/8-27NPT REDUCER NIPPLE
(OEM SUPPLIED)
CEEMAT Application Guidelines

The CEEMAT is a fully automated transmission. The following are some general guidelines which should be considered when specifying a CEEMAT.

The OEM must submit an application approval request (FUL 219) for all new CEEMAT applications. This request must be approved by TCONA prior to the sale of the transmission to the OEM. Applications outside North America require service support verification.

Engines

The following engines have been confirmed to be compatible with the CEEMAT:

<table>
<thead>
<tr>
<th>Make</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caterpillar</td>
<td>3116**, 3306, 3176, 3460C*, 3406E*</td>
</tr>
<tr>
<td>Cummins</td>
<td>C8.3**, L10, M11, N14* (mech. and elec.)</td>
</tr>
<tr>
<td>Detroit Diesel</td>
<td>Series 60, 8V92*</td>
</tr>
<tr>
<td>Mack</td>
<td>E7, EM7</td>
</tr>
</tbody>
</table>

* - 1650 Lb·ft max
** - Air throttle required

Inquiries on other engines should be directed to the engine manufacturer to address engine/CEEMAT interface hardware availability and to TCONA to address CEEMAT compatibility issues.

CEEMAT Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Max. Torque</th>
<th>Max. Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTO-11109A-AT (E)</td>
<td>1150 Lbf·ft</td>
<td>330 hp</td>
</tr>
<tr>
<td>RTO-11109B-AT (E)</td>
<td>1350 Lbf·ft</td>
<td>370 hp</td>
</tr>
<tr>
<td>RTO-13109A-AT (E)</td>
<td>1450 Lbf·ft</td>
<td>450 hp</td>
</tr>
<tr>
<td>RTO-13109B-AT (E)</td>
<td>1650 Lbf·ft</td>
<td>600 hp</td>
</tr>
</tbody>
</table>

AT = Mechanically Governed Engines
ATE = Electronically Governed Engines

Oil Pans

<table>
<thead>
<tr>
<th>Type</th>
<th>Vocations</th>
<th>Max. Opr. Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Standard</td>
<td>Forward - 20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side - 15%</td>
</tr>
<tr>
<td>Rotated</td>
<td>All Wheel Drive</td>
<td>Forward - 40%</td>
</tr>
<tr>
<td></td>
<td>Vehicles, Severe Grades</td>
<td>Side - 30%*</td>
</tr>
<tr>
<td>Low Profile</td>
<td>Vehicles with Oil Pan</td>
<td>Forward - 20%</td>
</tr>
<tr>
<td></td>
<td>Ground Clearance Issues</td>
<td>Side - 15%</td>
</tr>
</tbody>
</table>

* - Side Slope Kit Required

PTO's

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Type</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>6 Bolt Engine Driven*</td>
<td>250 Lb·ft</td>
</tr>
<tr>
<td></td>
<td>6 Bolt C/S Driven</td>
<td>500 Lb·ft</td>
</tr>
<tr>
<td></td>
<td>8 Bolt C/S Driven</td>
<td>500 Lb·ft</td>
</tr>
<tr>
<td>ATE</td>
<td>6 Bolt Engine Driven*</td>
<td>250 Lb·ft</td>
</tr>
<tr>
<td></td>
<td>6 Bolt C/S Driven (STD)</td>
<td>500 Lb·ft</td>
</tr>
<tr>
<td></td>
<td>8 Bolt C/S Driven*</td>
<td>500 Lb·ft</td>
</tr>
<tr>
<td></td>
<td>Thru-Shaft</td>
<td>500 Lb·ft</td>
</tr>
</tbody>
</table>

* - Not available on nodal mount torque converter housings.
** - Available only if inertia brake is moved to 6 bolt C/S location.

Cooling Requirements

The CEEMAT normally requires a cooler with a heat rejection rate ≥ 1500 BTUs/minute (85%-87% efficiency). The heat rejection rate will be increased for severe duty vocations based on application analysis.
Body Builder Guide For Tapping Into Electrical Systems

Body builder electrical systems that are to be interconnected with the CEEMAT electrical system should adhere to the latest recommendations of SAE J1292. In addition to SAE J1292, the following recommendations should be followed:

1. All wiring terminals should be properly insulated to prevent “short circuits”. All terminals should be of insulation grip design to provide a reliable connection and to prevent terminal fatigue.

2. Terminals and splices that are connected outside the body should be moisture resistant design. Molded insulator for ring terminals should be used. Molded connector/insulators are recommended for use with blade or pin type terminals.

3. Wires must be routed to provide at least 75mm [3.00"] clearance to moving parts, unless positively fastened or protected by conduit.

4. Wire routing should avoid areas where temperatures exceed 80 degrees C [180 degrees F] and a minimum clearance of 150mm [6.00"] should be maintained from exhaust system components. Where compliance with this requirement is not possible, heat insulation and heat shields are required.

5. Wire routing and component mounting (switches, relays, etc.) should be located to be easily removed for service. Do not surround the components with body structure that will prevent removal for service.

6. Wiring to all circuit components (switches, relays, etc.) in exposed locations shall provide a drip loop to prevent moisture from being conducted into the device via the wire connection.

7. Routing wiring into wheel splash areas should be avoided. When such routing cannot be avoided, adequate clipping or protective shielding is required to protect wiring from stone and ice damage.

8. Routing wires under the frame side-members or at points lower than the bottom frame flange should be avoided to prevent damage to the wires in off-road operations.

9. The wire retainers and grommets installed by the assembly plant are designed to accommodate only the OEM installed wires. Additional wiring or tubing must be retained by additional clips. When added wires to tubes are routed through sheet metal panels, new holes must be used (with adequate wire protection and sealing).

10. All wiring connections to components of the factory-installed system must be accomplished by using the correct mating wire termination. (Connections on studs and ground connections must use ring type terminations).

11. When it is necessary to splice wires, the splice must be adequately crimped to provide a good mechanical and electrical connection. And double wall heat shrink tubing should be used where the outer wall will provide adequate electrical insulation and the inner wall melts and seals the splice from the environment.
Appendix VI

12. Chassis harnesses are provided with connections to permit body builders to interface features and ancillary devices such as:

- Transmission Neutral Output (for Remote throttles)
- Quick to Neutral
- Engine Brake Disable
- Trans in Gear
- Auto Neutral
- Countershaft P.T.O.
- Split-Shaft P.T.O.

13. **Never add another circuit or splice into the CEEMAT ignition or battery power supplies.**

The fuses and circuit breakers installed at the assembly plant are designed to protect the wiring and electrical components from overloads. **Never remove a factory installed fuse or circuit breaker and replace with a high value device.** If the added electrical device causes “fuse blow”, or circuit breaker cycling, it indicates the total load is too high for the factory-installed circuit protection and requires revisions in the added circuit; not an increase in fuse or circuit breaker size.

In this case, the items to be added cannot be added directly to the circuit, but must be connected through a separate hang-on switch or relay of the correct capacity, using added wiring of the correct gauge. Failure to adopt this precaution will lead to switch contacts burning. The following wire table suggest wire gauges for various maximum current draws and will aid in the selection of the correct wire size. The current capacity of a given wire varies with temperature and type of insulation, but the following values are generally acceptable.

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Maximum Current Capacity (Crosslink Polythene Copper Wire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14 Amps</td>
</tr>
<tr>
<td>18</td>
<td>18 Amps</td>
</tr>
<tr>
<td>16</td>
<td>24 Amps</td>
</tr>
<tr>
<td>14</td>
<td>34 Amps</td>
</tr>
<tr>
<td>12</td>
<td>42 Amps</td>
</tr>
<tr>
<td>10</td>
<td>58 Amps</td>
</tr>
<tr>
<td>8</td>
<td>80 Amps</td>
</tr>
<tr>
<td>6</td>
<td>110 Amps</td>
</tr>
</tbody>
</table>

If the total electrical load on the circuit, after the addition of electrical equipment, is less than the fuse protection in that circuit or less than the capacity of some limiting component (switch, relay, etc.), the items to be added can be connected directly to that circuit. The connection points and allowable loads are normally found in the owners manual. However, you may want to contact the OEM. **Never add another circuit or splice into the CEEMAT ignition or battery power supplies.**

Ceemat Inputs and Outputs

14. Service Brake switch is an air pressure switch in the brake line which detects the application of the service, work or trailer brakes. The switch is normally open at low pressure. It closes its contacts on increasing air pressure; the threshold is 4 psig. The switch is connected to the low pressure control side of the pneumatic brake system and must be located so that application of either the service, work or the trailer brakes increases air pressure to the switch. Parking brakes alone must not activate this switch. **Do not remove replace or splice into this circuit.** If an additional brake signal is needed for any reason an additional brake switch must be added. Service Brake is an input (+12 Volts when active) Pin E of the CEEMAT ECU.

15. Transmission Neutral output is a +12 Volt 2 Amp output which is active when the operator requests neutral (via the shift lever or Quick to Neutral) and the transmission mode is neutral. This output is not used to drive a start enable relay. The purpose of the neutral output is to signal vehicle systems, such as throttle boost, that the transmission is in neutral. Pin V of the CEEMAT ECU.
16. Trans In Gear is a 12 Volt 1 Amp output which is active whenever the CEEMAT shift lever is not in neutral. Pin 10 of the Electronic Shift Lever (ESL). Pin A3 of the Push Button Control.

17. Countershaft P.T.O. is either a two (2) wire ball switch or an air pressure switch which is normally open. The switch must close when ever the P.T.O. is engaged. This is an input (+12 Volts when active). When this input is active the CEEMAT will hold current gear and turn on the lock-up and interrupt clutches in the torque converter. Pin D of the CEEMAT ECU.

18. Split-Shaft P.T.O. is either a two (2) wire ball switch or an air pressure switch which is normally open. The switch must close when ever the P.T.O. is engaged. This is an input (+12 Volts when active). When this input is active the CEEMAT will shift to direct when the shift lever is moved to “D” and turn on the lock-up and interrupt clutches in the torque converter. The CEEMAT will shift to neutral only when the shift lever is moved to “N”. Pin R of the CEEMAT ECU. This feature must be enabled at the factory.

19. Engine Driven P.T.O. that utilizes the 6-bolt opening on the torque converter does not require any electrical interface to the CEEMAT transmission.

20. Quick to Neutral switch is an air pressure switch in the brake line which detects the application of the work brakes. The switch is normally open at low pressure and closes its contacts on increasing air pressure; the threshold is 4 psig. The switch is connected to the low pressure control side of the pneumatic work brake system and must be located so that application of the work brakes increases air pressure to the switch. Parking brakes alone could be used to activate this switch. In some systems a toggle switch wired in series may be used to disable Quick to Neutral while using the work station. When QTN is active it will keep the CEEMAT in gear while disengaging the interrupt clutch. The Interrupt clutch is the main clutch, it connects the impeller of the torque converter to the input shaft causing torque transfer to transmission output shaft. Quick to Neutral is an input (+12 Volts when active). If Quick to Neutral is used an additional pressure switch must be used. DO NOT use the service brake switch for this feature. Pin R of the CEEMAT ECU. This feature must be enabled at the factory.

21. Auto Neutral switch is an air pressure switch in the parking brake line which detects the application of the parking brakes. The switch is normally closed at low pressure and opens its contacts on increasing air pressure; the threshold is 4 psig. The switch is connected to the low pressure control side of the parking brake system and must be located so that application of the parking brakes decreases air pressure to the switch. When Auto Neutral is active it will Disengage the Interrupt clutch and shift the CEEMAT to neutral. Auto Neutral is an input (grounded when active) Pin 15 of the Electronic Shift Lever (ESL). Pin B10 of the Push Button Control.

22. Engine Brake Disable is a +12 Volt 2 Amp output which is active when ever the CEEMAT is in neutral or the torque converter is not in lock up. Engine Brake Disconnect would turn on a relay to disconnect the engine brake. The normally closed contacts of the relay would be wired in series with the engine brake system. Engine Brake Disconnect would only be used with mechanically governed engines. Engine Brake Disconnect would eliminate the need for a pressure switch in the lock-up port of the torque converter and a pressure switch on the air throttle system as illustrated in the CEEMAT Installation Guide TRIG 0020. Pin F of the CEEMAT ECU.
The Roadranger® System is an unbeatable combination of the best products from Eaton and Dana – partnering to provide you the most advanced, most trouble-free drivetrain in the industry. And it’s backed by the Roadrangers – the most experienced, most expert, most accessible drivetrain consultants in the business.

For spec’ing or service assistance, call 1-800-826-HELP (4357) 24 hours a day, 7 days a week, (Mexico: 001-800-826-HELP (4357)) for more time on the road. Or visit our web site at www.roadranger.com.